File size: 16,338 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
f4648fc
 
a135ad5
 
b209823
0ace4dc
 
 
 
53f998b
1f5cf77
 
 
 
ee210e2
f4648fc
 
 
868eab9
53f998b
 
a7544c9
 
 
1f5cf77
5ec1a65
9f57959
b209823
a7544c9
b209823
868eab9
1f5cf77
 
a7544c9
 
 
9f57959
 
868eab9
 
 
a7544c9
868eab9
 
a7544c9
 
 
a135ad5
5201a38
868eab9
 
5201a38
 
d7b1815
53f998b
 
5ec1a65
 
53f998b
 
 
 
9f57959
1f5cf77
a7544c9
 
53f998b
 
 
5ec1a65
 
079e30e
53f998b
079e30e
53f998b
 
 
079e30e
5ec1a65
53f998b
b14b10a
53f998b
b14b10a
5ec1a65
53f998b
 
 
 
5ec1a65
53f998b
 
 
5ec1a65
53f998b
 
 
 
 
 
0ace4dc
a7544c9
079e30e
 
 
 
 
 
 
ee210e2
 
 
 
 
bd46f72
a7544c9
a898014
a135ad5
9f57959
 
 
a135ad5
 
 
 
 
 
 
 
9f57959
 
 
 
 
 
 
 
a135ad5
9f57959
 
 
a135ad5
 
 
 
db6a3b7
a898014
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
ee210e2
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
5201a38
868eab9
 
 
 
 
 
 
a7544c9
 
b209823
 
 
 
 
 
a135ad5
b209823
079e30e
 
 
a7544c9
079e30e
 
 
 
 
 
a7544c9
079e30e
 
 
a7544c9
079e30e
 
 
b209823
a7544c9
 
 
868eab9
 
 
 
 
a7544c9
868eab9
 
 
079e30e
 
36dc32d
868eab9
 
 
 
079e30e
 
868eab9
db6a3b7
a7544c9
ee210e2
a135ad5
1f5cf77
5ec1a65
53f998b
 
 
a135ad5
a7544c9
 
1f5cf77
a135ad5
 
a7544c9
a135ad5
a7544c9
b14b10a
a135ad5
 
 
1f5cf77
 
 
b14b10a
1f5cf77
 
a135ad5
1f5cf77
ee210e2
a135ad5
 
 
53f998b
a135ad5
db6a3b7
a7544c9
9880f3d
a898014
690b53e
a898014
db6a3b7
 
 
 
 
 
 
 
 
868eab9
 
 
 
 
36dc32d
a135ad5
868eab9
7d475c1
868eab9
7d475c1
 
ee210e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a898014
2e78ab8
db6a3b7
367e6d3
ee210e2
db6a3b7
 
 
 
 
 
 
2e7f188
a898014
db6a3b7
367e6d3
 
db6a3b7
367e6d3
 
db6a3b7
a135ad5
db6a3b7
 
 
a898014
 
ee210e2
a898014
 
 
db6a3b7
 
 
 
a135ad5
 
2e78ab8
a135ad5
db6a3b7
 
a135ad5
db6a3b7
 
 
 
2e78ab8
db6a3b7
a135ad5
db6a3b7
 
a135ad5
db6a3b7
ee210e2
 
 
a135ad5
b14b10a
 
ee210e2
db6a3b7
b14b10a
db6a3b7
53f998b
9f57959
 
1f5cf77
 
 
 
 
9f57959
 
53f998b
9f57959
b209823
 
1f5cf77
 
 
5201a38
868eab9
 
1f5cf77
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)


# GPU λ©”λͺ¨λ¦¬ κ΄€λ ¨ ν™˜κ²½ λ³€μˆ˜ μˆ˜μ •
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'  # A100에 맞게 증가
os.environ['CUDA_VISIBLE_DEVICES'] = '0'  # 단일 GPU μ‚¬μš©
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'  # A100μ—μ„œλŠ” 비동기 μ‹€ν–‰ ν—ˆμš©

def initialize_models():
    global pipeline, translator, flux_pipe
    
    try:
        import torch
        
        # L40S GPU μ΅œμ ν™” μ„€μ •
        torch.backends.cudnn.benchmark = True
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
        
        print("Initializing Trellis pipeline...")
        pipeline = TrellisImageTo3DPipeline.from_pretrained(
            "JeffreyXiang/TRELLIS-image-large"
        )
        
        if torch.cuda.is_available():
            pipeline = pipeline.to("cuda")
            # λͺ¨λΈμ„ FP16으둜 λ³€ν™˜
            for param in pipeline.parameters():
                param.data = param.data.half()
            
        print("Initializing translator...")
        translator = translation_pipeline(
            "translation",
            model="Helsinki-NLP/opus-mt-ko-en",
            device="cuda"
        )
        
        # Flux νŒŒμ΄ν”„λΌμΈμ€ λ‚˜μ€‘μ— μ΄ˆκΈ°ν™”
        flux_pipe = None
        
        print("Models initialized successfully")
        return True
        
    except Exception as e:
        print(f"Model initialization error: {str(e)}")
        return False

def get_flux_pipe():
    """Flux νŒŒμ΄ν”„λΌμΈμ„ ν•„μš”ν•  λ•Œλ§Œ λ‘œλ“œν•˜λŠ” ν•¨μˆ˜"""
    global flux_pipe
    if flux_pipe is None:
        try:
            free_memory()
            flux_pipe = FluxPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-dev",
                use_safetensors=True
            ).to("cuda")
            # FP16으둜 λ³€ν™˜
            flux_pipe.to(torch.float16)
        except Exception as e:
            print(f"Error loading Flux pipeline: {e}")
            return None
    return flux_pipe

def free_memory():
    """κ°•ν™”λœ λ©”λͺ¨λ¦¬ 정리 ν•¨μˆ˜"""
    import gc
    import os
    
    # Python 가비지 μ»¬λ ‰μ…˜
    gc.collect()
    
    # CUDA λ©”λͺ¨λ¦¬ 정리
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    # μž„μ‹œ 파일 정리
    tmp_dirs = ['/tmp/transformers_cache', '/tmp/torch_home', 
                '/tmp/huggingface', '/tmp/cache']
    
    for dir_path in tmp_dirs:
        if os.path.exists(dir_path):
            try:
                for file in os.listdir(dir_path):
                    file_path = os.path.join(dir_path, file)
                    if os.path.isfile(file_path):
                        try:
                            os.unlink(file_path)
                        except:
                            pass
            except:
                pass


def setup_gpu_model(model):
    """GPU 섀정이 ν•„μš”ν•œ λͺ¨λΈμ„ μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜"""
    if torch.cuda.is_available():
        model = model.to("cuda")
    return model


def translate_if_korean(text):
    if any(ord('κ°€') <= ord(char) <= ord('힣') for char in text):
        translated = translator(text)[0]['translation_text']
        return translated
    return text


def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    try:
        if pipeline is None:
            raise Exception("Pipeline not initialized")
            
        trial_id = str(uuid.uuid4())
        
        # 이미지가 λ„ˆλ¬΄ μž‘μ€ 경우 크기 μ‘°μ •
        min_size = 64
        if image.size[0] < min_size or image.size[1] < min_size:
            ratio = min_size / min(image.size)
            new_size = tuple(int(dim * ratio) for dim in image.size)
            image = image.resize(new_size, Image.LANCZOS)
        
        try:
            processed_image = pipeline.preprocess_image(image)
            if processed_image is None:
                raise Exception("Failed to process image")
                
            processed_image.save(f"{TMP_DIR}/{trial_id}.png")
            return trial_id, processed_image
            
        except Exception as e:
            print(f"Error in image preprocessing: {str(e)}")
            return None, None
        
    except Exception as e:
        print(f"Error in preprocess_image: {str(e)}")
        return None, None

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
                ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
    try:
        if randomize_seed:
            seed = np.random.randint(0, MAX_SEED)
            
        input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
        
        # L40S에 맞게 이미지 크기 μ œν•œ μ‘°μ •
        max_size = 768  # L40SλŠ” 더 큰 이미지 처리 κ°€λŠ₯
        if max(input_image.size) > max_size:
            ratio = max_size / max(input_image.size)
            input_image = input_image.resize(
                (int(input_image.size[0] * ratio), 
                 int(input_image.size[1] * ratio)),
                Image.LANCZOS
            )
        
        if torch.cuda.is_available():
            pipeline.to("cuda")
        
        with torch.cuda.amp.autocast():  # μžλ™ ν˜Όν•© 정밀도 μ‚¬μš©
            outputs = pipeline.run(
                input_image,
                seed=seed,
                formats=["gaussian", "mesh"],
                preprocess_image=False,
                sparse_structure_sampler_params={
                    "steps": min(ss_sampling_steps, 20),  # L40Sμ—μ„œ 더 λ§Žμ€ μŠ€ν… ν—ˆμš©
                    "cfg_strength": ss_guidance_strength,
                },
                slat_sampler_params={
                    "steps": min(slat_sampling_steps, 20),
                    "cfg_strength": slat_guidance_strength,
                }
            )
        
        # λΉ„λ””μ˜€ 생성
        video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
        video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=40)['normal']
        video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
        
        trial_id = str(uuid.uuid4())
        video_path = f"{TMP_DIR}/{trial_id}.mp4"
        os.makedirs(os.path.dirname(video_path), exist_ok=True)
        imageio.mimsave(video_path, video, fps=20)
        
        state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
        
        if torch.cuda.is_available():
            pipeline.to("cpu")
        
        return state, video_path
        
    except Exception as e:
        print(f"Error in image_to_3d: {str(e)}")
        if torch.cuda.is_available():
            pipeline.to("cpu")
        raise e


def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
    try:
        free_memory()
        
        flux_pipe = get_flux_pipe()
        if flux_pipe is None:
            raise Exception("Failed to load Flux pipeline")
        
        # L40S에 맞게 크기 μ œν•œ μ‘°μ •
        height = min(height, 1024)
        width = min(width, 1024)
        
        translated_prompt = translate_if_korean(prompt)
        final_prompt = f"{translated_prompt}, wbgmsst, 3D, white background"
        
        with torch.cuda.amp.autocast():
            output = flux_pipe(
                prompt=[final_prompt],
                height=height,
                width=width,
                guidance_scale=guidance_scale,
                num_inference_steps=num_steps,
                generator=torch.Generator(device='cuda')
            )
            
        image = output.images[0]
        
        free_memory()
        return image
        
    except Exception as e:
        print(f"Error in generate_image_from_text: {str(e)}")
        free_memory()
        raise e


def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path

def activate_button() -> gr.Button:
    return gr.Button(interactive=True)

def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)

css = """
footer {
    visibility: hidden;
}
"""

# Gradio μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    gr.Markdown("""
    # Craft3D : 3D Asset Creation & Text-to-Image Generation
    """)
    
    with gr.Tabs():
        with gr.TabItem("Image to 3D"):
            with gr.Row():
                with gr.Column():
                    image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
                    
                    with gr.Accordion(label="Generation Settings", open=False):
                        seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        gr.Markdown("Stage 1: Sparse Structure Generation")
                        with gr.Row():
                            ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                            ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                        gr.Markdown("Stage 2: Structured Latent Generation")
                        with gr.Row():
                            slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                            slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

                    generate_btn = gr.Button("Generate")
                    
                    with gr.Accordion(label="GLB Extraction Settings", open=False):
                        mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                        texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
                    
                    extract_glb_btn = gr.Button("Extract GLB", interactive=False)

                with gr.Column():
                    video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
                    model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
                    download_glb = gr.DownloadButton(label="Download GLB", interactive=False)

        with gr.TabItem("Text to Image"):
            with gr.Row():
                with gr.Column():
                    text_prompt = gr.Textbox(
                        label="Text Prompt",
                        placeholder="Enter your image description...",
                        lines=3
                    )
                    
                    with gr.Row():
                        txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
                        txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
                    
                    with gr.Row():
                        guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
                        num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
                    
                    generate_txt2img_btn = gr.Button("Generate Image")
                
                with gr.Column():
                    txt2img_output = gr.Image(label="Generated Image")
    
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()


    # Example images
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[trial_id, image_prompt],
            run_on_click=True,
            examples_per_page=32,  # 예제 수 κ°μ†Œ
            cache_examples=False  # 예제 캐싱 λΉ„ν™œμ„±ν™”λŠ” Examples μ»΄ν¬λ„ŒνŠΈμ—μ„œ μ„€μ •
        )
    


    # Handlers
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, 
                slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
        concurrency_limit=1
    ).then(
        activate_button,
        outputs=[extract_glb_btn]
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
        concurrency_limit=1
    ).then(
        activate_button,
        outputs=[download_glb]
    )
    generate_txt2img_btn.click(
        generate_image_from_text,
        inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
        outputs=[txt2img_output],
        concurrency_limit=1,
        show_progress=True  # 진행 상황 ν‘œμ‹œ
    )


if __name__ == "__main__":
    import warnings
    warnings.filterwarnings('ignore')
    
    # CUDA μ„€μ • 확인
    if torch.cuda.is_available():
        print(f"Using GPU: {torch.cuda.get_device_name()}")
        print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
    
    # 디렉토리 생성
    os.makedirs(TMP_DIR, exist_ok=True)
    
    # λ©”λͺ¨λ¦¬ 정리
    free_memory()
    
    # λͺ¨λΈ μ΄ˆκΈ°ν™”
    if not initialize_models():
        print("Failed to initialize models")
        exit(1)
    
    # Gradio μ•± μ‹€ν–‰
    demo.queue(max_size=2).launch(  # 큐 크기 증가
        share=True,
        max_threads=4,  # μŠ€λ ˆλ“œ 수 증가
        show_error=True,
        server_port=7860,
        server_name="0.0.0.0"
    )