Spaces:
Paused
Paused
File size: 16,338 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 f4648fc a135ad5 b209823 0ace4dc 53f998b 1f5cf77 ee210e2 f4648fc 868eab9 53f998b a7544c9 1f5cf77 5ec1a65 9f57959 b209823 a7544c9 b209823 868eab9 1f5cf77 a7544c9 9f57959 868eab9 a7544c9 868eab9 a7544c9 a135ad5 5201a38 868eab9 5201a38 d7b1815 53f998b 5ec1a65 53f998b 9f57959 1f5cf77 a7544c9 53f998b 5ec1a65 079e30e 53f998b 079e30e 53f998b 079e30e 5ec1a65 53f998b b14b10a 53f998b b14b10a 5ec1a65 53f998b 5ec1a65 53f998b 5ec1a65 53f998b 0ace4dc a7544c9 079e30e ee210e2 bd46f72 a7544c9 a898014 a135ad5 9f57959 a135ad5 9f57959 a135ad5 9f57959 a135ad5 db6a3b7 a898014 9880f3d a898014 9880f3d ee210e2 9880f3d a898014 9880f3d 5201a38 868eab9 a7544c9 b209823 a135ad5 b209823 079e30e a7544c9 079e30e a7544c9 079e30e a7544c9 079e30e b209823 a7544c9 868eab9 a7544c9 868eab9 079e30e 36dc32d 868eab9 079e30e 868eab9 db6a3b7 a7544c9 ee210e2 a135ad5 1f5cf77 5ec1a65 53f998b a135ad5 a7544c9 1f5cf77 a135ad5 a7544c9 a135ad5 a7544c9 b14b10a a135ad5 1f5cf77 b14b10a 1f5cf77 a135ad5 1f5cf77 ee210e2 a135ad5 53f998b a135ad5 db6a3b7 a7544c9 9880f3d a898014 690b53e a898014 db6a3b7 868eab9 36dc32d a135ad5 868eab9 7d475c1 868eab9 7d475c1 ee210e2 a898014 2e78ab8 db6a3b7 367e6d3 ee210e2 db6a3b7 2e7f188 a898014 db6a3b7 367e6d3 db6a3b7 367e6d3 db6a3b7 a135ad5 db6a3b7 a898014 ee210e2 a898014 db6a3b7 a135ad5 2e78ab8 a135ad5 db6a3b7 a135ad5 db6a3b7 2e78ab8 db6a3b7 a135ad5 db6a3b7 a135ad5 db6a3b7 ee210e2 a135ad5 b14b10a ee210e2 db6a3b7 b14b10a db6a3b7 53f998b 9f57959 1f5cf77 9f57959 53f998b 9f57959 b209823 1f5cf77 5201a38 868eab9 1f5cf77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# GPU λ©λͺ¨λ¦¬ κ΄λ ¨ νκ²½ λ³μ μμ
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' # A100μ λ§κ² μ¦κ°
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # λ¨μΌ GPU μ¬μ©
os.environ['CUDA_LAUNCH_BLOCKING'] = '0' # A100μμλ λΉλκΈ° μ€ν νμ©
def initialize_models():
global pipeline, translator, flux_pipe
try:
import torch
# L40S GPU μ΅μ ν μ€μ
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print("Initializing Trellis pipeline...")
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
# λͺ¨λΈμ FP16μΌλ‘ λ³ν
for param in pipeline.parameters():
param.data = param.data.half()
print("Initializing translator...")
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device="cuda"
)
# Flux νμ΄νλΌμΈμ λμ€μ μ΄κΈ°ν
flux_pipe = None
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
return False
def get_flux_pipe():
"""Flux νμ΄νλΌμΈμ νμν λλ§ λ‘λνλ ν¨μ"""
global flux_pipe
if flux_pipe is None:
try:
free_memory()
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
use_safetensors=True
).to("cuda")
# FP16μΌλ‘ λ³ν
flux_pipe.to(torch.float16)
except Exception as e:
print(f"Error loading Flux pipeline: {e}")
return None
return flux_pipe
def free_memory():
"""κ°νλ λ©λͺ¨λ¦¬ μ 리 ν¨μ"""
import gc
import os
# Python κ°λΉμ§ 컬λ μ
gc.collect()
# CUDA λ©λͺ¨λ¦¬ μ 리
if torch.cuda.is_available():
torch.cuda.empty_cache()
# μμ νμΌ μ 리
tmp_dirs = ['/tmp/transformers_cache', '/tmp/torch_home',
'/tmp/huggingface', '/tmp/cache']
for dir_path in tmp_dirs:
if os.path.exists(dir_path):
try:
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
if os.path.isfile(file_path):
try:
os.unlink(file_path)
except:
pass
except:
pass
def setup_gpu_model(model):
"""GPU μ€μ μ΄ νμν λͺ¨λΈμ μ²λ¦¬νλ ν¨μ"""
if torch.cuda.is_available():
model = model.to("cuda")
return model
def translate_if_korean(text):
if any(ord('κ°') <= ord(char) <= ord('ν£') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
try:
if pipeline is None:
raise Exception("Pipeline not initialized")
trial_id = str(uuid.uuid4())
# μ΄λ―Έμ§κ° λ무 μμ κ²½μ° ν¬κΈ° μ‘°μ
min_size = 64
if image.size[0] < min_size or image.size[1] < min_size:
ratio = min_size / min(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
try:
processed_image = pipeline.preprocess_image(image)
if processed_image is None:
raise Exception("Failed to process image")
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return None, None
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# L40Sμ λ§κ² μ΄λ―Έμ§ ν¬κΈ° μ ν μ‘°μ
max_size = 768 # L40Sλ λ ν° μ΄λ―Έμ§ μ²λ¦¬ κ°λ₯
if max(input_image.size) > max_size:
ratio = max_size / max(input_image.size)
input_image = input_image.resize(
(int(input_image.size[0] * ratio),
int(input_image.size[1] * ratio)),
Image.LANCZOS
)
if torch.cuda.is_available():
pipeline.to("cuda")
with torch.cuda.amp.autocast(): # μλ νΌν© μ λ°λ μ¬μ©
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 20), # L40Sμμ λ λ§μ μ€ν
νμ©
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 20),
"cfg_strength": slat_guidance_strength,
}
)
# λΉλμ€ μμ±
video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=40)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=20)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
if torch.cuda.is_available():
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if torch.cuda.is_available():
pipeline.to("cpu")
raise e
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
free_memory()
flux_pipe = get_flux_pipe()
if flux_pipe is None:
raise Exception("Failed to load Flux pipeline")
# L40Sμ λ§κ² ν¬κΈ° μ ν μ‘°μ
height = min(height, 1024)
width = min(width, 1024)
translated_prompt = translate_if_korean(prompt)
final_prompt = f"{translated_prompt}, wbgmsst, 3D, white background"
with torch.cuda.amp.autocast():
output = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
generator=torch.Generator(device='cuda')
)
image = output.images[0]
free_memory()
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
free_memory()
raise e
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio μΈν°νμ΄μ€ μ μ
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=32, # μμ μ κ°μ
cache_examples=False # μμ μΊμ± λΉνμ±νλ Examples μ»΄ν¬λνΈμμ μ€μ
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1,
show_progress=True # μ§ν μν© νμ
)
if __name__ == "__main__":
import warnings
warnings.filterwarnings('ignore')
# CUDA μ€μ νμΈ
if torch.cuda.is_available():
print(f"Using GPU: {torch.cuda.get_device_name()}")
print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
# λλ ν 리 μμ±
os.makedirs(TMP_DIR, exist_ok=True)
# λ©λͺ¨λ¦¬ μ 리
free_memory()
# λͺ¨λΈ μ΄κΈ°ν
if not initialize_models():
print("Failed to initialize models")
exit(1)
# Gradio μ± μ€ν
demo.queue(max_size=2).launch( # ν ν¬κΈ° μ¦κ°
share=True,
max_threads=4, # μ€λ λ μ μ¦κ°
show_error=True,
server_port=7860,
server_name="0.0.0.0"
) |