OpenSUNO / app.py
ginipick's picture
Update app.py
bd2cd71 verified
raw
history blame
9.58 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import torch
import logging
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('yue_generation.log'),
logging.StreamHandler()
]
)
# GPU ์„ค์ • ์ตœ์ ํ™”
def optimize_gpu_settings():
if torch.cuda.is_available():
# L40S์— ์ตœ์ ํ™”๋œ ์„ค์ •
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
# GPU ๋ฉ”๋ชจ๋ฆฌ ์„ค์ •
torch.cuda.empty_cache()
torch.cuda.set_device(0)
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
else:
logging.warning("GPU not available!")
# flash-attn ์„ค์น˜ ํ•จ์ˆ˜ ๊ฐœ์„ 
def install_flash_attn():
try:
logging.info("Installing flash-attn...")
subprocess.run(
["pip", "install", "flash-attn", "--no-build-isolation"],
check=True,
capture_output=True
)
logging.info("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
logging.error(f"Failed to install flash-attn: {e}")
raise
# ์ดˆ๊ธฐํ™” ํ•จ์ˆ˜
def initialize_system():
optimize_gpu_settings()
install_flash_attn()
from huggingface_hub import snapshot_download
# xcodec_mini_infer ํด๋” ์ƒ์„ฑ
folder_path = './inference/xcodec_mini_infer'
os.makedirs(folder_path, exist_ok=True)
logging.info(f"Created folder at: {folder_path}")
# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./inference/xcodec_mini_infer",
resume_download=True
)
# inference ๋””๋ ‰ํ† ๋ฆฌ๋กœ ์ด๋™
try:
os.chdir("./inference")
logging.info(f"Working directory changed to: {os.getcwd()}")
except FileNotFoundError as e:
logging.error(f"Directory error: {e}")
raise
# ์บ์‹œ๋ฅผ ํ™œ์šฉํ•œ ํŒŒ์ผ ๊ด€๋ฆฌ
@lru_cache(maxsize=100)
def get_cached_file_path(content_hash, prefix):
return create_temp_file(content_hash, prefix)
def empty_output_folder(output_dir):
try:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
logging.info(f"Output folder cleaned: {output_dir}")
except Exception as e:
logging.error(f"Error cleaning output folder: {e}")
raise
def create_temp_file(content, prefix, suffix=".txt"):
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
logging.debug(f"Temporary file created: {temp_file.name}")
return temp_file.name
def get_last_mp3_file(output_dir):
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
if not mp3_files:
logging.warning("No MP3 files found")
return None
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
# L40S์— ์ตœ์ ํ™”๋œ ์ถ”๋ก  ํ•จ์ˆ˜
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
try:
# ์ž„์‹œ ํŒŒ์ผ ์ƒ์„ฑ
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
empty_output_folder(output_dir)
# L40S์— ์ตœ์ ํ™”๋œ ๋ช…๋ น์–ด
command = [
"python", "infer.py",
"--stage1_model", "m-a-p/YuE-s1-7B-anneal-en-cot",
"--stage2_model", "m-a-p/YuE-s2-1B-general",
"--genre_txt", genre_txt_path,
"--lyrics_txt", lyrics_txt_path,
"--run_n_segments", str(num_segments),
"--stage2_batch_size", "8", # L40S์— ๋งž๊ฒŒ ์ฆ๊ฐ€
"--output_dir", output_dir,
"--cuda_idx", "0",
"--max_new_tokens", str(max_new_tokens),
"--disable_offload_model",
"--use_flash_attention_2", # Flash Attention 2 ํ™œ์„ฑํ™”
"--bf16" # BF16 ์ •๋ฐ€๋„ ์‚ฌ์šฉ
]
# CUDA ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
env = os.environ.copy()
env.update({
"CUDA_VISIBLE_DEVICES": "0",
"CUDA_HOME": "/usr/local/cuda",
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512"
})
# ๋ช…๋ น ์‹คํ–‰
process = subprocess.run(command, env=env, check=True, capture_output=True)
logging.info("Inference completed successfully")
# ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ
last_mp3 = get_last_mp3_file(output_dir)
if last_mp3:
logging.info(f"Generated audio file: {last_mp3}")
return last_mp3
else:
logging.warning("No output audio file generated")
return None
except Exception as e:
logging.error(f"Inference error: {e}")
raise
finally:
# ์ž„์‹œ ํŒŒ์ผ ์ •๋ฆฌ
for file in [genre_txt_path, lyrics_txt_path]:
try:
os.remove(file)
logging.debug(f"Removed temporary file: {file}")
except Exception as e:
logging.warning(f"Failed to remove temporary file {file}: {e}")
# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (L40S Optimized)")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(
label="Genre",
placeholder="Enter music genre and style descriptions..."
)
lyrics_txt = gr.Textbox(
label="Lyrics",
placeholder="Enter song lyrics...",
lines=10
)
with gr.Column():
num_segments = gr.Number(
label="Number of Song Segments",
value=2,
minimum=1,
maximum=4,
step=1,
interactive=True
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
minimum=500,
maximum=32000, # L40S์˜ ํฐ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ํ™œ์šฉ
step=500,
value=4000,
interactive=True
)
submit_btn = gr.Button("Generate Music", variant="primary")
music_out = gr.Audio(label="Generated Audio")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt]
)
# ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™”
initialize_system()
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
# ์„œ๋ฒ„ ์„ค์ •์œผ๋กœ ์‹คํ–‰
demo.queue(concurrency_count=2).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
enable_queue=True,
show_api=True,
show_error=True
)