Spaces:
Building
on
L40S
Building
on
L40S
File size: 9,577 Bytes
9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 5ebef38 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 c76da8f bd2cd71 9b1a8f5 bd2cd71 0e550b3 9b1a8f5 bd2cd71 9b1a8f5 c76da8f bd2cd71 c76da8f bd2cd71 c76da8f bd2cd71 c76da8f bd2cd71 c82669c 9b1a8f5 bd2cd71 c94ca07 bd2cd71 9b1a8f5 bd2cd71 c76da8f bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 92ed43a bd2cd71 9b1a8f5 bd2cd71 fc4c070 bd2cd71 fc4c070 bd2cd71 fc4c070 aac9182 a5a83e4 fc4c070 bd2cd71 fc4c070 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import torch
import logging
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
# λ‘κΉ
μ€μ
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('yue_generation.log'),
logging.StreamHandler()
]
)
# GPU μ€μ μ΅μ ν
def optimize_gpu_settings():
if torch.cuda.is_available():
# L40Sμ μ΅μ νλ μ€μ
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
# GPU λ©λͺ¨λ¦¬ μ€μ
torch.cuda.empty_cache()
torch.cuda.set_device(0)
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
else:
logging.warning("GPU not available!")
# flash-attn μ€μΉ ν¨μ κ°μ
def install_flash_attn():
try:
logging.info("Installing flash-attn...")
subprocess.run(
["pip", "install", "flash-attn", "--no-build-isolation"],
check=True,
capture_output=True
)
logging.info("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
logging.error(f"Failed to install flash-attn: {e}")
raise
# μ΄κΈ°ν ν¨μ
def initialize_system():
optimize_gpu_settings()
install_flash_attn()
from huggingface_hub import snapshot_download
# xcodec_mini_infer ν΄λ μμ±
folder_path = './inference/xcodec_mini_infer'
os.makedirs(folder_path, exist_ok=True)
logging.info(f"Created folder at: {folder_path}")
# λͺ¨λΈ λ€μ΄λ‘λ
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./inference/xcodec_mini_infer",
resume_download=True
)
# inference λλ ν λ¦¬λ‘ μ΄λ
try:
os.chdir("./inference")
logging.info(f"Working directory changed to: {os.getcwd()}")
except FileNotFoundError as e:
logging.error(f"Directory error: {e}")
raise
# μΊμλ₯Ό νμ©ν νμΌ κ΄λ¦¬
@lru_cache(maxsize=100)
def get_cached_file_path(content_hash, prefix):
return create_temp_file(content_hash, prefix)
def empty_output_folder(output_dir):
try:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
logging.info(f"Output folder cleaned: {output_dir}")
except Exception as e:
logging.error(f"Error cleaning output folder: {e}")
raise
def create_temp_file(content, prefix, suffix=".txt"):
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
logging.debug(f"Temporary file created: {temp_file.name}")
return temp_file.name
def get_last_mp3_file(output_dir):
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
if not mp3_files:
logging.warning("No MP3 files found")
return None
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
# L40Sμ μ΅μ νλ μΆλ‘ ν¨μ
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
try:
# μμ νμΌ μμ±
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
empty_output_folder(output_dir)
# L40Sμ μ΅μ νλ λͺ
λ Ήμ΄
command = [
"python", "infer.py",
"--stage1_model", "m-a-p/YuE-s1-7B-anneal-en-cot",
"--stage2_model", "m-a-p/YuE-s2-1B-general",
"--genre_txt", genre_txt_path,
"--lyrics_txt", lyrics_txt_path,
"--run_n_segments", str(num_segments),
"--stage2_batch_size", "8", # L40Sμ λ§κ² μ¦κ°
"--output_dir", output_dir,
"--cuda_idx", "0",
"--max_new_tokens", str(max_new_tokens),
"--disable_offload_model",
"--use_flash_attention_2", # Flash Attention 2 νμ±ν
"--bf16" # BF16 μ λ°λ μ¬μ©
]
# CUDA νκ²½ λ³μ μ€μ
env = os.environ.copy()
env.update({
"CUDA_VISIBLE_DEVICES": "0",
"CUDA_HOME": "/usr/local/cuda",
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512"
})
# λͺ
λ Ή μ€ν
process = subprocess.run(command, env=env, check=True, capture_output=True)
logging.info("Inference completed successfully")
# κ²°κ³Ό μ²λ¦¬
last_mp3 = get_last_mp3_file(output_dir)
if last_mp3:
logging.info(f"Generated audio file: {last_mp3}")
return last_mp3
else:
logging.warning("No output audio file generated")
return None
except Exception as e:
logging.error(f"Inference error: {e}")
raise
finally:
# μμ νμΌ μ 리
for file in [genre_txt_path, lyrics_txt_path]:
try:
os.remove(file)
logging.debug(f"Removed temporary file: {file}")
except Exception as e:
logging.warning(f"Failed to remove temporary file {file}: {e}")
# Gradio μΈν°νμ΄μ€
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (L40S Optimized)")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(
label="Genre",
placeholder="Enter music genre and style descriptions..."
)
lyrics_txt = gr.Textbox(
label="Lyrics",
placeholder="Enter song lyrics...",
lines=10
)
with gr.Column():
num_segments = gr.Number(
label="Number of Song Segments",
value=2,
minimum=1,
maximum=4,
step=1,
interactive=True
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
minimum=500,
maximum=32000, # L40Sμ ν° λ©λͺ¨λ¦¬λ₯Ό νμ©
step=500,
value=4000,
interactive=True
)
submit_btn = gr.Button("Generate Music", variant="primary")
music_out = gr.Audio(label="Generated Audio")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt]
)
# μμ€ν
μ΄κΈ°ν
initialize_system()
# μ΄λ²€νΈ νΈλ€λ¬
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
# μλ² μ€μ μΌλ‘ μ€ν
demo.queue(concurrency_count=2).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
enable_queue=True,
show_api=True,
show_error=True
) |