File size: 18,344 Bytes
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae33a9e
 
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
d471634
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb2f86
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb2f86
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb2f86
565a2da
ccb2f86
 
565a2da
 
ccb2f86
 
565a2da
ccb2f86
565a2da
 
 
 
 
 
ccb2f86
565a2da
 
 
 
 
 
 
 
 
 
 
 
7aa7a12
565a2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da813a
ccb2f86
6c4e820
3aeca45
ae33a9e
ccb2f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565a2da
09cc71e
 
1829498
ccb2f86
565a2da
 
 
 
ccb2f86
565a2da
 
d471634
 
 
ccb2f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8361cc
565a2da
838f64e
b5906f6
1829498
 
3989673
ccb2f86
44a062c
ccb2f86
 
 
 
 
 
 
 
 
960406b
ccb2f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c27e53
ccb2f86
 
3649171
ccb2f86
 
 
 
 
 
 
3649171
ccb2f86
 
3649171
565a2da
ccb2f86
 
 
 
565a2da
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gradio as gr
import spaces

import argparse
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
from PIL import Image

import torch
import torch.nn.functional as F
import numpy as np
import random
import warnings
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from utils import *
import hashlib

from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    LoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    is_accelerate_available,
    is_accelerate_version,
    is_invisible_watermark_available,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from accelerate.utils import set_seed
from tqdm import tqdm
if is_invisible_watermark_available():
    from .watermark import StableDiffusionXLWatermarker

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionXLPipeline

        >>> pipe = StableDiffusionXLPipeline.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ... )
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> image = pipe(prompt).images[0]
        ```
"""

def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
    x_coord = torch.arange(kernel_size)
    gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
    gaussian_1d = gaussian_1d / gaussian_1d.sum()
    gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
    kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
    
    return kernel

def gaussian_filter(latents, kernel_size=3, sigma=1.0):
    channels = latents.shape[1]
    kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
    blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
    return blurred_latents

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin):
    """
    Pipeline for text-to-image generation using Stable Diffusion XL.

    [ํด๋ž˜์Šค ์„ค๋ช… ์ƒ๋žต โ€ฆ]
    """
    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.default_sample_size = self.unet.config.sample_size

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None

    # (์ดํ•˜ ๊ธฐ์กด ๋ฉ”์„œ๋“œ๋“ค ์ƒ๋žต โ€ฆ)

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        negative_original_size: Optional[Tuple[int, int]] = None,
        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
        negative_target_size: Optional[Tuple[int, int]] = None,
        ################### AccDiffusion specific parameters ####################
        image_lr: Optional[torch.FloatTensor] = None,
        view_batch_size: int = 16,
        multi_decoder: bool = True,
        stride: Optional[int] = 64,
        cosine_scale_1: Optional[float] = 3.,
        cosine_scale_2: Optional[float] = 1.,
        cosine_scale_3: Optional[float] = 1.,
        sigma: Optional[float] = 1.0,
        lowvram: bool = False,
        multi_guidance_scale: Optional[float] = 7.5,
        use_guassian: bool = True,
        upscale_mode: Union[str, List[str]] = 'bicubic_latent',
        use_multidiffusion: bool = True,
        use_dilated_sampling : bool = True,
        use_skip_residual: bool = True,
        use_progressive_upscaling: bool = True,
        shuffle: bool = False,
        result_path: str = './outputs/AccDiffusion',
        debug: bool = False,
        use_md_prompt: bool = False,
        attn_res=None,
        save_attention_map: bool = False,
        seed: Optional[int] = None,
        c : Optional[float] = 0.3,
    ):
        r"""
        [ํ•จ์ˆ˜ ์„ค๋ช… ์ƒ๋žต โ€ฆ]
        """
        # (์—ฌ๊ธฐ์„œ๋Š” ๊ธฐ์กด __call__ ํ•จ์ˆ˜ ๋‚ด๋ถ€ ๊ตฌํ˜„์„ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.)
        # ... (์ค‘๋žต)
        output_images = []

        ###################################################### Phase Initialization ########################################################
        # (์ค‘๋žต) ์‹ค์ œ denoising ๋ฐ upscaling ๋ถ€๋ถ„

        # ๋งˆ์ง€๋ง‰์— ์ด๋ฏธ์ง€ ์ €์žฅ ๋ฐ ๋ฐ˜ํ™˜
        return output_images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ### AccDiffusion PARAMETERS ###
    parser.add_argument('--model_ckpt', default='stabilityai/stable-diffusion-xl-base-1.0')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--prompt', default="Astronaut on Mars During sunset.")
    parser.add_argument('--negative_prompt', default="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
    parser.add_argument('--cosine_scale_1', default=3, type=float, help="cosine scale 1")
    parser.add_argument('--cosine_scale_2', default=1, type=float, help="cosine scale 2")
    parser.add_argument('--cosine_scale_3', default=1, type=float, help="cosine scale 3")
    parser.add_argument('--sigma', default=0.8, type=float, help="sigma")
    parser.add_argument('--multi_decoder', default=True, type=bool, help="multi decoder or not")
    parser.add_argument('--num_inference_steps', default=50, type=int, help="num inference steps")
    parser.add_argument('--resolution', default='1024,1024', help="target resolution")
    parser.add_argument('--use_multidiffusion', default=False, action='store_true', help="use multidiffusion or not")
    parser.add_argument('--use_guassian', default=False, action='store_true', help="use guassian or not")
    parser.add_argument('--use_dilated_sampling', default=True, action='store_true', help="use dilated sampling or not")
    parser.add_argument('--use_progressive_upscaling', default=False, action='store_true', help="use progressive upscaling or not")
    parser.add_argument('--shuffle', default=False, action='store_true', help="shuffle or not")
    parser.add_argument('--use_skip_residual', default=False, action='store_true', help="use skip_residual or not")
    parser.add_argument('--save_attention_map', default=False, action='store_true', help="save attention map or not")
    parser.add_argument('--multi_guidance_scale', default=7.5, type=float, help="multi guidance scale")
    parser.add_argument('--upscale_mode', default="bicubic_latent", help="bicubic_image or bicubic_latent ")
    parser.add_argument('--use_md_prompt', default=False, action='store_true', help="use md prompt or not")
    parser.add_argument('--view_batch_size', default=16, type=int, help="view_batch_size")
    parser.add_argument('--stride', default=64, type=int, help="stride")
    parser.add_argument('--c', default=0.3, type=float, help="threshold")
    ## others ##
    parser.add_argument('--debug', default=False, action='store_true')
    parser.add_argument('--experiment_name', default="AccDiffusion")

    args = parser.parse_args()

    # ํŒŒ์ดํ”„๋ผ์ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ (ํ•„์š”ํ•œ ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ ์‚ฌ์šฉ)
    pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
    
    
    # ----------------------- GRADIO INTERFACE (๊ฐœ์„ ๋œ UI) -----------------------

    # ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์— ์ ์šฉํ•  CSS (๋ฐฐ๊ฒฝ, ํฐํŠธ, ์นด๋“œ ์Šคํƒ€์ผ ๋“ฑ)
    css = """
    body {
        background: linear-gradient(135deg, #2c3e50, #4ca1af);
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        color: #ffffff;
    }
    #col-container {
        margin: 20px auto;
        padding: 20px;
        max-width: 900px;
        background-color: rgba(0, 0, 0, 0.5);
        border-radius: 12px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.5);
    }
    h1, h2 {
        text-align: center;
        margin-bottom: 10px;
    }
    footer {
        visibility: hidden;
    }
    """

    @spaces.GPU(duration=200)
    def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
        set_seed(seed)
        width, height = list(map(int, resolution.split(',')))
        cross_attention_kwargs = {"edit_type": "visualize",
                                  "n_self_replace": 0.4,
                                  "n_cross_replace": {"default_": 1.0, "confetti": 0.8},
                                  }
        generator = torch.Generator(device='cuda').manual_seed(seed)
        
        print(f"Prompt: {prompt}")
        md5_hash = hashlib.md5(prompt.encode()).hexdigest()
        result_path = f"./output/{args.experiment_name}/{md5_hash}/{width}_{height}_{seed}/"

        images = pipe(
            prompt, 
            negative_prompt=args.negative_prompt, 
            generator=generator,
            width=width, 
            height=height, 
            view_batch_size=args.view_batch_size, 
            stride=args.stride,
            cross_attention_kwargs=cross_attention_kwargs,
            num_inference_steps=num_inference_steps, 
            guidance_scale=guidance_scale, 
            multi_guidance_scale=args.multi_guidance_scale,
            cosine_scale_1=args.cosine_scale_1, 
            cosine_scale_2=args.cosine_scale_2, 
            cosine_scale_3=args.cosine_scale_3,
            sigma=args.sigma, 
            use_guassian=args.use_guassian,
            multi_decoder=args.multi_decoder, 
            upscale_mode=args.upscale_mode, 
            use_multidiffusion=use_multidiffusion, 
            use_skip_residual=use_skip_residual, 
            use_progressive_upscaling=use_progressive_upscaling,
            use_dilated_sampling=use_dilated_sampling,
            shuffle=shuffle, 
            result_path=result_path, 
            debug=args.debug, 
            save_attention_map=args.save_attention_map, 
            use_md_prompt=use_md_prompt, 
            c=args.c
        )
        print(images)

        return images


    MAX_SEED = np.iinfo(np.int32).max

    with gr.Blocks(css=css) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
            gr.Markdown(
                "์ƒ์„ฑํ•  ์ด๋ฏธ์ง€๋ฅผ ์œ„ํ•œ ์ฐฝ์˜์ ์ธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”. ์ด ๋ชจ๋ธ์€ ์ตœ์‹  AccDiffusion ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ๊ณผ ํ•ด์ƒ๋„์˜ ์˜ˆ์ˆ ์ž‘ํ’ˆ์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค."
            )
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", placeholder="์˜ˆ: A surreal landscape with floating islands and vibrant colors.", lines=2, scale=4)
                submit_btn = gr.Button("Generate", scale=1)
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    resolution = gr.Radio(
                        label="Resolution",
                        choices=[
                            "1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
                        ],
                        value="1024,1024",
                        interactive=True
                    )
                    with gr.Column():
                        num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=50, step=1, value=30, info="Number of denoising steps")
                        guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=510, step=0.1, value=7.5, info="Higher values increase adherence to the prompt")
                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, info="Set a seed for reproducibility")
                with gr.Row():
                    use_multidiffusion = gr.Checkbox(label="Use MultiDiffusion", value=True)
                    use_skip_residual = gr.Checkbox(label="Use Skip Residual", value=True)
                    use_dilated_sampling = gr.Checkbox(label="Use Dilated Sampling", value=True)
                with gr.Row():
                    use_progressive_upscaling = gr.Checkbox(label="Use Progressive Upscaling", value=False)
                    shuffle = gr.Checkbox(label="Shuffle", value=False)
                    use_md_prompt = gr.Checkbox(label="Use MD Prompt", value=False)
            
            output_images = gr.Gallery(label="Output Images", format="png").style(grid=[2], height="auto")
            gr.Markdown("### Example Prompts")
            gr.Examples(
                examples=[
                    ["A surreal landscape with floating islands and vibrant colors."],
                    ["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
                    ["A majestic dragon soaring over a medieval castle amidst stormy skies."],
                    ["Futuristic robot exploring an alien planet with mysterious flora."],
                    ["Abstract geometric patterns in vivid, pulsating colors."],
                    ["A mystical forest illuminated by bioluminescent plants under a starry sky."]
                ],
                inputs=[prompt],
                label="Click an example to populate the prompt box."
            )
        submit_btn.click(
            fn=infer,
            inputs=[prompt, resolution, num_inference_steps, guidance_scale, seed, 
                    use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt],
            outputs=[output_images],
            show_api=False
        )
    demo.launch(show_api=False, show_error=True)