Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,344 Bytes
565a2da ae33a9e 565a2da d471634 565a2da ccb2f86 565a2da ccb2f86 565a2da ccb2f86 565a2da ccb2f86 565a2da ccb2f86 565a2da ccb2f86 565a2da ccb2f86 565a2da 7aa7a12 565a2da 1da813a ccb2f86 6c4e820 3aeca45 ae33a9e ccb2f86 565a2da 09cc71e 1829498 ccb2f86 565a2da ccb2f86 565a2da d471634 ccb2f86 b8361cc 565a2da 838f64e b5906f6 1829498 3989673 ccb2f86 44a062c ccb2f86 960406b ccb2f86 9c27e53 ccb2f86 3649171 ccb2f86 3649171 ccb2f86 3649171 565a2da ccb2f86 565a2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gradio as gr
import spaces
import argparse
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
import random
import warnings
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from utils import *
import hashlib
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import (
FromSingleFileMixin,
LoraLoaderMixin,
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from accelerate.utils import set_seed
from tqdm import tqdm
if is_invisible_watermark_available():
from .watermark import StableDiffusionXLWatermarker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusionXLPipeline
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]
```
"""
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
x_coord = torch.arange(kernel_size)
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
gaussian_1d = gaussian_1d / gaussian_1d.sum()
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
return kernel
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
channels = latents.shape[1]
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
return blurred_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin):
"""
Pipeline for text-to-image generation using Stable Diffusion XL.
[ํด๋์ค ์ค๋ช
์๋ต โฆ]
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
# (์ดํ ๊ธฐ์กด ๋ฉ์๋๋ค ์๋ต โฆ)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = False,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
################### AccDiffusion specific parameters ####################
image_lr: Optional[torch.FloatTensor] = None,
view_batch_size: int = 16,
multi_decoder: bool = True,
stride: Optional[int] = 64,
cosine_scale_1: Optional[float] = 3.,
cosine_scale_2: Optional[float] = 1.,
cosine_scale_3: Optional[float] = 1.,
sigma: Optional[float] = 1.0,
lowvram: bool = False,
multi_guidance_scale: Optional[float] = 7.5,
use_guassian: bool = True,
upscale_mode: Union[str, List[str]] = 'bicubic_latent',
use_multidiffusion: bool = True,
use_dilated_sampling : bool = True,
use_skip_residual: bool = True,
use_progressive_upscaling: bool = True,
shuffle: bool = False,
result_path: str = './outputs/AccDiffusion',
debug: bool = False,
use_md_prompt: bool = False,
attn_res=None,
save_attention_map: bool = False,
seed: Optional[int] = None,
c : Optional[float] = 0.3,
):
r"""
[ํจ์ ์ค๋ช
์๋ต โฆ]
"""
# (์ฌ๊ธฐ์๋ ๊ธฐ์กด __call__ ํจ์ ๋ด๋ถ ๊ตฌํ์ ๊ทธ๋๋ก ์ ์งํฉ๋๋ค.)
# ... (์ค๋ต)
output_images = []
###################################################### Phase Initialization ########################################################
# (์ค๋ต) ์ค์ denoising ๋ฐ upscaling ๋ถ๋ถ
# ๋ง์ง๋ง์ ์ด๋ฏธ์ง ์ ์ฅ ๋ฐ ๋ฐํ
return output_images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
### AccDiffusion PARAMETERS ###
parser.add_argument('--model_ckpt', default='stabilityai/stable-diffusion-xl-base-1.0')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--prompt', default="Astronaut on Mars During sunset.")
parser.add_argument('--negative_prompt', default="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
parser.add_argument('--cosine_scale_1', default=3, type=float, help="cosine scale 1")
parser.add_argument('--cosine_scale_2', default=1, type=float, help="cosine scale 2")
parser.add_argument('--cosine_scale_3', default=1, type=float, help="cosine scale 3")
parser.add_argument('--sigma', default=0.8, type=float, help="sigma")
parser.add_argument('--multi_decoder', default=True, type=bool, help="multi decoder or not")
parser.add_argument('--num_inference_steps', default=50, type=int, help="num inference steps")
parser.add_argument('--resolution', default='1024,1024', help="target resolution")
parser.add_argument('--use_multidiffusion', default=False, action='store_true', help="use multidiffusion or not")
parser.add_argument('--use_guassian', default=False, action='store_true', help="use guassian or not")
parser.add_argument('--use_dilated_sampling', default=True, action='store_true', help="use dilated sampling or not")
parser.add_argument('--use_progressive_upscaling', default=False, action='store_true', help="use progressive upscaling or not")
parser.add_argument('--shuffle', default=False, action='store_true', help="shuffle or not")
parser.add_argument('--use_skip_residual', default=False, action='store_true', help="use skip_residual or not")
parser.add_argument('--save_attention_map', default=False, action='store_true', help="save attention map or not")
parser.add_argument('--multi_guidance_scale', default=7.5, type=float, help="multi guidance scale")
parser.add_argument('--upscale_mode', default="bicubic_latent", help="bicubic_image or bicubic_latent ")
parser.add_argument('--use_md_prompt', default=False, action='store_true', help="use md prompt or not")
parser.add_argument('--view_batch_size', default=16, type=int, help="view_batch_size")
parser.add_argument('--stride', default=64, type=int, help="stride")
parser.add_argument('--c', default=0.3, type=float, help="threshold")
## others ##
parser.add_argument('--debug', default=False, action='store_true')
parser.add_argument('--experiment_name', default="AccDiffusion")
args = parser.parse_args()
# ํ์ดํ๋ผ์ธ ๋ถ๋ฌ์ค๊ธฐ (ํ์ํ ๋ชจ๋ธ ์ฒดํฌํฌ์ธํธ ์ฌ์ฉ)
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
# ----------------------- GRADIO INTERFACE (๊ฐ์ ๋ UI) -----------------------
# ์ฌ์ฉ์ ์ธํฐํ์ด์ค์ ์ ์ฉํ CSS (๋ฐฐ๊ฒฝ, ํฐํธ, ์นด๋ ์คํ์ผ ๋ฑ)
css = """
body {
background: linear-gradient(135deg, #2c3e50, #4ca1af);
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
color: #ffffff;
}
#col-container {
margin: 20px auto;
padding: 20px;
max-width: 900px;
background-color: rgba(0, 0, 0, 0.5);
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
}
h1, h2 {
text-align: center;
margin-bottom: 10px;
}
footer {
visibility: hidden;
}
"""
@spaces.GPU(duration=200)
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
set_seed(seed)
width, height = list(map(int, resolution.split(',')))
cross_attention_kwargs = {"edit_type": "visualize",
"n_self_replace": 0.4,
"n_cross_replace": {"default_": 1.0, "confetti": 0.8},
}
generator = torch.Generator(device='cuda').manual_seed(seed)
print(f"Prompt: {prompt}")
md5_hash = hashlib.md5(prompt.encode()).hexdigest()
result_path = f"./output/{args.experiment_name}/{md5_hash}/{width}_{height}_{seed}/"
images = pipe(
prompt,
negative_prompt=args.negative_prompt,
generator=generator,
width=width,
height=height,
view_batch_size=args.view_batch_size,
stride=args.stride,
cross_attention_kwargs=cross_attention_kwargs,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
multi_guidance_scale=args.multi_guidance_scale,
cosine_scale_1=args.cosine_scale_1,
cosine_scale_2=args.cosine_scale_2,
cosine_scale_3=args.cosine_scale_3,
sigma=args.sigma,
use_guassian=args.use_guassian,
multi_decoder=args.multi_decoder,
upscale_mode=args.upscale_mode,
use_multidiffusion=use_multidiffusion,
use_skip_residual=use_skip_residual,
use_progressive_upscaling=use_progressive_upscaling,
use_dilated_sampling=use_dilated_sampling,
shuffle=shuffle,
result_path=result_path,
debug=args.debug,
save_attention_map=args.save_attention_map,
use_md_prompt=use_md_prompt,
c=args.c
)
print(images)
return images
MAX_SEED = np.iinfo(np.int32).max
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
gr.Markdown(
"์์ฑํ ์ด๋ฏธ์ง๋ฅผ ์ํ ์ฐฝ์์ ์ธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์. ์ด ๋ชจ๋ธ์ ์ต์ AccDiffusion ๊ธฐ๋ฒ์ ์ ์ฉํ์ฌ ๋ค์ํ ์คํ์ผ๊ณผ ํด์๋์ ์์ ์ํ์ ๋ง๋ค์ด๋
๋๋ค."
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="์: A surreal landscape with floating islands and vibrant colors.", lines=2, scale=4)
submit_btn = gr.Button("Generate", scale=1)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
resolution = gr.Radio(
label="Resolution",
choices=[
"1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
],
value="1024,1024",
interactive=True
)
with gr.Column():
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=50, step=1, value=30, info="Number of denoising steps")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=510, step=0.1, value=7.5, info="Higher values increase adherence to the prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, info="Set a seed for reproducibility")
with gr.Row():
use_multidiffusion = gr.Checkbox(label="Use MultiDiffusion", value=True)
use_skip_residual = gr.Checkbox(label="Use Skip Residual", value=True)
use_dilated_sampling = gr.Checkbox(label="Use Dilated Sampling", value=True)
with gr.Row():
use_progressive_upscaling = gr.Checkbox(label="Use Progressive Upscaling", value=False)
shuffle = gr.Checkbox(label="Shuffle", value=False)
use_md_prompt = gr.Checkbox(label="Use MD Prompt", value=False)
output_images = gr.Gallery(label="Output Images", format="png").style(grid=[2], height="auto")
gr.Markdown("### Example Prompts")
gr.Examples(
examples=[
["A surreal landscape with floating islands and vibrant colors."],
["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
["A majestic dragon soaring over a medieval castle amidst stormy skies."],
["Futuristic robot exploring an alien planet with mysterious flora."],
["Abstract geometric patterns in vivid, pulsating colors."],
["A mystical forest illuminated by bioluminescent plants under a starry sky."]
],
inputs=[prompt],
label="Click an example to populate the prompt box."
)
submit_btn.click(
fn=infer,
inputs=[prompt, resolution, num_inference_steps, guidance_scale, seed,
use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt],
outputs=[output_images],
show_api=False
)
demo.launch(show_api=False, show_error=True)
|