Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
# Setup and initialization code remains the same | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
# Model initialization | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
# Custom CSS for enhanced visual design | |
css = """ | |
footer {display: none !important} | |
.container {max-width: 1200px; margin: auto;} | |
.gr-form {border-radius: 12px; padding: 20px; background: rgba(255, 255, 255, 0.05);} | |
.gr-box {border-radius: 8px; border: 1px solid rgba(255, 255, 255, 0.1);} | |
.gr-button { | |
border-radius: 8px; | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
border: none; | |
color: white; | |
transition: transform 0.2s ease; | |
} | |
.gr-button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
.gr-input {background: rgba(255, 255, 255, 0.05) !important;} | |
.gr-input:focus {border-color: #4B79A1 !important;} | |
.title-text { | |
text-align: center; | |
font-size: 2.5em; | |
font-weight: bold; | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin-bottom: 1em; | |
} | |
""" | |
# Create Gradio interface with enhanced design | |
with gr.Blocks(theme=gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="slate", | |
neutral_hue="slate", | |
font=gr.themes.GoogleFont("Inter") | |
), css=css) as demo: | |
gr.HTML(""" | |
<div class="title-text">AI Image Generator</div> | |
<div style="text-align: center; margin-bottom: 2em; color: #666;"> | |
Create stunning images from your descriptions using advanced AI | |
</div> | |
""") | |
with gr.Row().style(equal_height=True): | |
with gr.Column(scale=3): | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="Image Description", | |
placeholder="Describe the image you want to create...", | |
lines=3, | |
elem_classes="gr-input" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024, | |
elem_classes="gr-input" | |
) | |
with gr.Column(scale=1): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024, | |
elem_classes="gr-input" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8, | |
elem_classes="gr-input" | |
) | |
with gr.Column(scale=1): | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5, | |
elem_classes="gr-input" | |
) | |
seed = gr.Number( | |
label="Seed (for reproducibility)", | |
value=3413, | |
precision=0, | |
elem_classes="gr-input" | |
) | |
generate_btn = gr.Button( | |
"✨ Generate Image", | |
variant="primary", | |
scale=1, | |
elem_classes="gr-button" | |
) | |
gr.HTML(""" | |
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);"> | |
<h4 style="margin: 0 0 0.5em 0;">Tips for best results:</h4> | |
<ul style="margin: 0; padding-left: 1.2em;"> | |
<li>Be specific in your descriptions</li> | |
<li>Include details about style, lighting, and mood</li> | |
<li>Experiment with different guidance scales</li> | |
</ul> | |
</div> | |
""") | |
with gr.Column(scale=4): | |
output = gr.Image( | |
label="Generated Image", | |
elem_classes="gr-box", | |
height=512 | |
) | |
with gr.Group(visible=False) as loading_info: | |
gr.HTML(""" | |
<div style="text-align: center; padding: 1em;"> | |
<div style="display: inline-block; animation: spin 1s linear infinite;">⚙️</div> | |
<p>Generating your image...</p> | |
</div> | |
""") | |
def process_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
return pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
# Add loading state | |
generate_btn.click( | |
fn=lambda: gr.update(visible=True), | |
outputs=[loading_info], | |
queue=False | |
).then( | |
process_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=output | |
).then( | |
fn=lambda: gr.update(visible=False), | |
outputs=[loading_info] | |
) | |
if __name__ == "__main__": | |
demo.launch() |