File size: 7,716 Bytes
176edce
 
 
 
 
 
 
f8844a3
 
 
176edce
f8844a3
176edce
 
 
 
 
343fdaf
176edce
 
 
 
 
 
 
 
 
343fdaf
f8844a3
176edce
 
343fdaf
176edce
 
 
 
343fdaf
f8844a3
de7fb8a
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7fb8a
 
 
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9b23e
3ec2621
7b9b23e
f8844a3
 
 
 
7b9b23e
3ec2621
7b9b23e
 
 
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9b23e
 
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9b23e
f8844a3
 
 
 
 
 
3ec2621
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9b23e
f8844a3
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
 
 
 
 
 
 
 
 
 
 
016778b
 
1b0733f
f8844a3
 
3ec2621
f8844a3
 
 
 
3ec2621
 
aba7c6b
f8844a3
 
 
3ec2621
343fdaf
176edce
f8844a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline

# Setup and initialization code remains the same
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

# Custom CSS for enhanced visual design
css = """
footer {display: none !important}
.container {max-width: 1200px; margin: auto;}
.gr-form {border-radius: 12px; padding: 20px; background: rgba(255, 255, 255, 0.05);}
.gr-box {border-radius: 8px; border: 1px solid rgba(255, 255, 255, 0.1);}
.gr-button {
    border-radius: 8px;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    border: none;
    color: white;
    transition: transform 0.2s ease;
}
.gr-button:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.gr-input {background: rgba(255, 255, 255, 0.05) !important;}
.gr-input:focus {border-color: #4B79A1 !important;}
.title-text {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    margin-bottom: 1em;
}
"""

# Create Gradio interface with enhanced design
with gr.Blocks(theme=gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="slate",
    neutral_hue="slate",
    font=gr.themes.GoogleFont("Inter")
), css=css) as demo:
    
    gr.HTML("""
        <div class="title-text">AI Image Generator</div>
        <div style="text-align: center; margin-bottom: 2em; color: #666;">
            Create stunning images from your descriptions using advanced AI
        </div>
    """)
    
    with gr.Row().style(equal_height=True):
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Image Description",
                    placeholder="Describe the image you want to create...",
                    lines=3,
                    elem_classes="gr-input"
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            with gr.Column(scale=1):
                                height = gr.Slider(
                                    label="Height",
                                    minimum=256,
                                    maximum=1152,
                                    step=64,
                                    value=1024,
                                    elem_classes="gr-input"
                                )
                            with gr.Column(scale=1):
                                width = gr.Slider(
                                    label="Width",
                                    minimum=256,
                                    maximum=1152,
                                    step=64,
                                    value=1024,
                                    elem_classes="gr-input"
                                )
                        
                        with gr.Row():
                            with gr.Column(scale=1):
                                steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=6,
                                    maximum=25,
                                    step=1,
                                    value=8,
                                    elem_classes="gr-input"
                                )
                            with gr.Column(scale=1):
                                scales = gr.Slider(
                                    label="Guidance Scale",
                                    minimum=0.0,
                                    maximum=5.0,
                                    step=0.1,
                                    value=3.5,
                                    elem_classes="gr-input"
                                )
                        
                        seed = gr.Number(
                            label="Seed (for reproducibility)",
                            value=3413,
                            precision=0,
                            elem_classes="gr-input"
                        )
                
                generate_btn = gr.Button(
                    "✨ Generate Image",
                    variant="primary",
                    scale=1,
                    elem_classes="gr-button"
                )
                
                gr.HTML("""
                    <div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
                        <h4 style="margin: 0 0 0.5em 0;">Tips for best results:</h4>
                        <ul style="margin: 0; padding-left: 1.2em;">
                            <li>Be specific in your descriptions</li>
                            <li>Include details about style, lighting, and mood</li>
                            <li>Experiment with different guidance scales</li>
                        </ul>
                    </div>
                """)
        
        with gr.Column(scale=4):
            output = gr.Image(
                label="Generated Image",
                elem_classes="gr-box",
                height=512
            )
            
            with gr.Group(visible=False) as loading_info:
                gr.HTML("""
                    <div style="text-align: center; padding: 1em;">
                        <div style="display: inline-block; animation: spin 1s linear infinite;">⚙️</div>
                        <p>Generating your image...</p>
                    </div>
                """)
    
    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
    
    # Add loading state
    generate_btn.click(
        fn=lambda: gr.update(visible=True),
        outputs=[loading_info],
        queue=False
    ).then(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    ).then(
        fn=lambda: gr.update(visible=False),
        outputs=[loading_info]
    )

if __name__ == "__main__":
    demo.launch()