Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,716 Bytes
176edce f8844a3 176edce f8844a3 176edce 343fdaf 176edce 343fdaf f8844a3 176edce 343fdaf 176edce 343fdaf f8844a3 de7fb8a f8844a3 de7fb8a f8844a3 7b9b23e 3ec2621 7b9b23e f8844a3 7b9b23e 3ec2621 7b9b23e f8844a3 7b9b23e f8844a3 7b9b23e f8844a3 3ec2621 f8844a3 7b9b23e f8844a3 3ec2621 016778b 1b0733f f8844a3 3ec2621 f8844a3 3ec2621 aba7c6b f8844a3 3ec2621 343fdaf 176edce f8844a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
# Setup and initialization code remains the same
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Custom CSS for enhanced visual design
css = """
footer {display: none !important}
.container {max-width: 1200px; margin: auto;}
.gr-form {border-radius: 12px; padding: 20px; background: rgba(255, 255, 255, 0.05);}
.gr-box {border-radius: 8px; border: 1px solid rgba(255, 255, 255, 0.1);}
.gr-button {
border-radius: 8px;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
border: none;
color: white;
transition: transform 0.2s ease;
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.gr-input {background: rgba(255, 255, 255, 0.05) !important;}
.gr-input:focus {border-color: #4B79A1 !important;}
.title-text {
text-align: center;
font-size: 2.5em;
font-weight: bold;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1em;
}
"""
# Create Gradio interface with enhanced design
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter")
), css=css) as demo:
gr.HTML("""
<div class="title-text">AI Image Generator</div>
<div style="text-align: center; margin-bottom: 2em; color: #666;">
Create stunning images from your descriptions using advanced AI
</div>
""")
with gr.Row().style(equal_height=True):
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3,
elem_classes="gr-input"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
with gr.Column(scale=1):
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024,
elem_classes="gr-input"
)
with gr.Column(scale=1):
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024,
elem_classes="gr-input"
)
with gr.Row():
with gr.Column(scale=1):
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8,
elem_classes="gr-input"
)
with gr.Column(scale=1):
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5,
elem_classes="gr-input"
)
seed = gr.Number(
label="Seed (for reproducibility)",
value=3413,
precision=0,
elem_classes="gr-input"
)
generate_btn = gr.Button(
"✨ Generate Image",
variant="primary",
scale=1,
elem_classes="gr-button"
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Tips for best results:</h4>
<ul style="margin: 0; padding-left: 1.2em;">
<li>Be specific in your descriptions</li>
<li>Include details about style, lighting, and mood</li>
<li>Experiment with different guidance scales</li>
</ul>
</div>
""")
with gr.Column(scale=4):
output = gr.Image(
label="Generated Image",
elem_classes="gr-box",
height=512
)
with gr.Group(visible=False) as loading_info:
gr.HTML("""
<div style="text-align: center; padding: 1em;">
<div style="display: inline-block; animation: spin 1s linear infinite;">⚙️</div>
<p>Generating your image...</p>
</div>
""")
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
# Add loading state
generate_btn.click(
fn=lambda: gr.update(visible=True),
outputs=[loading_info],
queue=False
).then(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
).then(
fn=lambda: gr.update(visible=False),
outputs=[loading_info]
)
if __name__ == "__main__":
demo.launch() |