Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
def
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
generator = torch.Generator().manual_seed(seed)
|
| 27 |
-
|
| 28 |
-
image = pipe(
|
| 29 |
-
prompt = prompt,
|
| 30 |
-
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
-
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
-
height = height,
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
-
|
| 38 |
-
return image
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
with gr.Column(elem_id="col-container"):
|
| 61 |
-
gr.Markdown(f"""
|
| 62 |
-
# Text-to-Image Gradio Template
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
-
""")
|
| 65 |
-
|
| 66 |
-
with gr.Row():
|
| 67 |
-
|
| 68 |
-
prompt = gr.Text(
|
| 69 |
-
label="Prompt",
|
| 70 |
-
show_label=False,
|
| 71 |
-
max_lines=1,
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
run_button = gr.Button("Run", scale=0)
|
| 77 |
-
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
seed = gr.Slider(
|
| 90 |
-
label="Seed",
|
| 91 |
-
minimum=0,
|
| 92 |
-
maximum=MAX_SEED,
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
with gr.Row():
|
| 118 |
-
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
num_inference_steps = gr.Slider(
|
| 128 |
-
label="Number of inference steps",
|
| 129 |
-
minimum=1,
|
| 130 |
-
maximum=12,
|
| 131 |
-
step=1,
|
| 132 |
-
value=2,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
gr.Examples(
|
| 136 |
-
examples = examples,
|
| 137 |
-
inputs = [prompt]
|
| 138 |
-
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
fn = infer,
|
| 142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 143 |
-
outputs = [result]
|
| 144 |
-
)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from os import path
|
| 6 |
+
from safetensors.torch import load_file
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 10 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 11 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 12 |
+
os.environ["HF_HOME"] = cache_path
|
| 13 |
+
|
| 14 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 15 |
import torch
|
| 16 |
+
from diffusers import FluxPipeline
|
| 17 |
|
| 18 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
|
| 20 |
+
class timer:
|
| 21 |
+
def __init__(self, method_name="timed process"):
|
| 22 |
+
self.method = method_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def __enter__(self):
|
| 25 |
+
self.start = time.time()
|
| 26 |
+
print(f"{self.method} starts")
|
| 27 |
|
| 28 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 29 |
+
end = time.time()
|
| 30 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 31 |
|
| 32 |
+
if not path.exists(cache_path):
|
| 33 |
+
os.makedirs(cache_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
| 36 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
| 37 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 38 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
|
|
|
| 39 |
|
| 40 |
+
with gr.Blocks() as demo:
|
| 41 |
+
with gr.Column():
|
| 42 |
+
with gr.Row():
|
| 43 |
+
with gr.Column():
|
| 44 |
+
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
| 45 |
+
height = gr.Number(label="Image Height", value=1024, interactive=True)
|
| 46 |
+
width = gr.Number(label="Image Width", value=1024, interactive=True)
|
| 47 |
+
# steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
| 48 |
+
# eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
|
| 49 |
+
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
| 50 |
+
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
| 51 |
+
btn = gr.Button(value="run")
|
| 52 |
+
with gr.Column():
|
| 53 |
+
output = gr.Gallery(height=1024)
|
| 54 |
|
| 55 |
+
@spaces.GPU
|
| 56 |
+
def process_image(num_images, height, width, prompt, seed):
|
| 57 |
+
global pipe
|
| 58 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 59 |
+
return pipe(
|
| 60 |
+
prompt=[prompt]*num_images,
|
| 61 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 62 |
+
num_inference_steps=8,
|
| 63 |
+
guidance_scale=3.5,
|
| 64 |
+
height=int(height),
|
| 65 |
+
width=int(width)
|
| 66 |
+
).images
|
| 67 |
|
| 68 |
+
reactive_controls = [num_images, height, width, prompt, seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# for control in reactive_controls:
|
| 71 |
+
# control.change(fn=process_image, inputs=reactive_controls, outputs=[output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
btn.click(process_image, inputs=reactive_controls, outputs=[output])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
demo.launch()
|