File size: 8,359 Bytes
176edce
 
 
 
 
 
 
f8844a3
 
 
176edce
0e7941e
176edce
 
 
 
 
343fdaf
176edce
 
 
 
 
 
 
 
 
343fdaf
f8844a3
176edce
 
343fdaf
176edce
 
 
 
343fdaf
0e7941e
de7fb8a
f8844a3
0e7941e
 
 
 
 
 
f8844a3
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
de7fb8a
 
 
0e7941e
 
e910eb1
0e7941e
f8844a3
0e7941e
7b9b23e
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
0e7941e
 
 
 
f8844a3
0e7941e
 
 
 
f8844a3
 
0e7941e
 
2de95f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7941e
 
 
2de95f9
0e7941e
 
 
 
 
 
 
3ec2621
 
 
 
 
 
 
 
 
 
 
016778b
 
1b0733f
f8844a3
3ec2621
 
 
aba7c6b
3ec2621
343fdaf
176edce
f8844a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

# Custom CSS
css = """
footer {display: none !important}
.gradio-container {max-width: 1200px; margin: auto;}
.contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;}
.generate-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 1em;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
"""

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">Flux 8Step LoRA: Image Generator</div>')
    gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Image Description",
                placeholder="Describe the image you want to create...",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed (for reproducibility)",
                    value=3413,
                    precision=0
                )
            
            generate_btn = gr.Button(
                "✨ Generate Image",
                elem_classes=["generate-btn"]
            )
            
            gr.HTML("""
                <div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
                    <h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒ… Cinematic Landscape</p>
                        <p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸ–ΌοΈ Fantasy Portrait</p>
                        <p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒƒ Cyberpunk Scene</p>
                        <p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">🎨 Abstract Art</p>
                        <p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">🌿 Macro Nature</p>
                        <p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
                    </div>
                    <h4 style="margin: 1em 0 0.5em 0;">Tips for best results:</h4>
                    <ul style="margin: 0; padding-left: 1.2em;">
                        <li>Be specific in your descriptions</li>
                        <li>Include details about style, lighting, and mood</li>
                        <li>Reference specific artists or techniques</li>
                        <li>Experiment with different guidance scales</li>
                    </ul>
                </div>
            """)
        
        with gr.Column(scale=4):
            output = gr.Image(label="Generated Image")
    
    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
    
    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()