File size: 3,344 Bytes
176edce
 
 
 
 
 
 
 
 
 
 
 
 
343fdaf
 
176edce
343fdaf
176edce
343fdaf
176edce
 
 
 
 
 
 
 
 
343fdaf
176edce
 
343fdaf
176edce
 
 
 
343fdaf
de7fb8a
 
 
 
 
 
 
 
7b9b23e
 
 
3ec2621
7b9b23e
 
 
 
 
3ec2621
7b9b23e
 
 
 
 
 
 
 
 
 
 
3ec2621
7b9b23e
 
 
 
3ec2621
3c467bb
343fdaf
3ec2621
 
 
 
 
 
 
 
 
 
016778b
 
1b0733f
343fdaf
3ec2621
 
 
aba7c6b
3ec2621
343fdaf
176edce
3ec2621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch
from diffusers import FluxPipeline

torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

css = """
footer {
    visibility: hidden;
}
"""


with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Your Image Description",
                    placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                    lines=3
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                            width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
                        
                        with gr.Row():
                            steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
                            scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
                        
                        seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
                
                generate_btn = gr.Button("Generate Image", variant="primary", scale=1)

        with gr.Column(scale=4):
            output = gr.Image(label="Your Generated Image")
    
 

    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()