Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,628 Bytes
176edce 0b63713 176edce f8844a3 0b63713 2045d7f 614753e f04852d 2045d7f f04852d cf46674 176edce 0e7941e 176edce ac3894a 176edce ac3894a 176edce 343fdaf 0b63713 19af4cb 176edce 343fdaf f8844a3 176edce 343fdaf cf46674 94c7aef cf46674 176edce 343fdaf 0b63713 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 0b63713 955c611 220b51e 94c7aef 955c611 9cce94f 955c611 9cce94f 955c611 1cdb3dd ab2e0a6 94c7aef 8e812a4 94c7aef 8e812a4 0e7941e 8e812a4 0e7941e 8e812a4 0e7941e 8e812a4 0e7941e 3ec2621 8e812a4 18f2392 8e812a4 2045d7f 8e812a4 220b51e 614753e 8e812a4 614753e 8e812a4 614753e 8e812a4 614753e 3cec5e4 9488128 f04852d 955c611 c686779 f04852d 6a3cd83 f04852d 955c611 9488128 c686779 f04852d 6a3cd83 955c611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
from transformers import pipeline
import base64
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# Hugging Face ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
# ์ํ ์ด๋ฏธ์ง์ ํ๋กฌํํธ ์ ์
SAMPLE_IMAGES = {
"3d1.webp": "the most famous hero according to Zhou Qi"
}
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# ์ธ์ฆ๋ ๋ชจ๋ธ ๋ก๋
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
# Hyper-SD LoRA ๋ก๋
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
@spaces.GPU
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
global pipe
if seed is None:
seed = torch.randint(0, 1000000, (1,)).item()
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
def contains_korean(text):
return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text)
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
prompt = translated
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
def generate_image(h, w, s, sc, p, sd):
"""Gradio์์ ๋๊ฒจ๋ฐ์ ํ๋ผ๋ฏธํฐ ์์์ ๋ง์ถฐ ์ด๋ฏธ์ง ์์ฑ ํจ์ ํธ์ถ"""
return process_and_save_image(
height=h,
width=w,
steps=s,
scales=sc,
prompt=p,
seed=sd
)
def update_random_seed():
return gr.Number.update(value=get_random_seed())
# Gradio ์ธํฐํ์ด์ค
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a);
border-radius: 20px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(45deg, #2196F3, #00BCD4);
border: none;
color: white;
font-weight: bold;
border-radius: 10px;
}
.output-image {
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.2);
}
.fixed-width {
max-width: 1024px;
margin: auto;
}
.gallery-container {
margin-top: 40px;
padding: 20px;
background: #f5f5f5;
border-radius: 15px;
}
.gallery-title {
text-align: center;
margin-bottom: 20px;
color: #333;
font-size: 1.5rem;
}
"""
) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1>
<p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p>
</div>
"""
)
with gr.Row(elem_classes="container"):
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the 3D image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โจ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4, elem_classes=["fixed-width"]):
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"],
value="3d.webp"
)
# Gallery ์น์
with gr.Row(elem_classes="gallery-container"):
gr.HTML("<h2 class='gallery-title'>Gallery</h2>")
gallery_html = "<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>"
for img_file, prompt in SAMPLE_IMAGES.items():
img_path = os.path.abspath(img_file) # ์ ๋ ๊ฒฝ๋ก๋ก ๋ณํ
if os.path.exists(img_path):
try:
# Base64๋ก ์ด๋ฏธ์ง ์ธ์ฝ๋ฉ
with open(img_path, "rb") as img:
img_data = base64.b64encode(img.read()).decode()
gallery_html += f"""
<div style='
border: 1px solid #ddd;
border-radius: 10px;
padding: 10px;
background: white;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
'>
<img src='data:image/webp;base64,{img_data}'
style='width: 100%;
border-radius: 8px;
margin-bottom: 10px;'
>
<p style='
margin: 5px 0;
font-weight: bold;
color: #333;
padding: 10px;
'>Prompt: {prompt}</p>
</div>
"""
except Exception as e:
print(f"Error loading image {img_file}: {str(e)}")
gallery_html += "</div>"
gr.HTML(gallery_html)
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
generate_btn.click(
fn=generate_image,
inputs=[height, width, steps, scales, prompt, seed], # ๋์
๋๋ฆฌ ๋์ ์์๋๋ก ๋ฆฌ์คํธ
outputs=output
)
randomize_seed.click(
fn=update_random_seed,
inputs=None,
outputs=seed
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])
|