Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -24,18 +24,23 @@ import gc
|
|
24 |
def clear_memory():
|
25 |
"""메모리 정리 함수"""
|
26 |
gc.collect()
|
27 |
-
|
28 |
-
|
29 |
-
torch.cuda.
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# GPU 설정을 try-except로 감싸기
|
34 |
if torch.cuda.is_available():
|
35 |
try:
|
36 |
-
torch.cuda.
|
37 |
-
|
38 |
-
|
|
|
39 |
except:
|
40 |
print("Warning: Could not configure CUDA settings")
|
41 |
|
@@ -62,8 +67,6 @@ BoundingBox = tuple[int, int, int, int]
|
|
62 |
pillow_heif.register_heif_opener()
|
63 |
pillow_heif.register_avif_opener()
|
64 |
|
65 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
-
|
67 |
# HF 토큰 설정
|
68 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
69 |
if HF_TOKEN is None:
|
@@ -106,9 +109,9 @@ pipe.fuse_lora(lora_scale=0.125)
|
|
106 |
# GPU 설정을 try-except로 감싸기
|
107 |
try:
|
108 |
if torch.cuda.is_available():
|
109 |
-
pipe.to("cuda")
|
110 |
-
except:
|
111 |
-
print("Warning: Could not move pipeline to CUDA")
|
112 |
|
113 |
class timer:
|
114 |
def __init__(self, method_name="timed process"):
|
|
|
24 |
def clear_memory():
|
25 |
"""메모리 정리 함수"""
|
26 |
gc.collect()
|
27 |
+
try:
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
with torch.cuda.device(0): # 명시적으로 device 0 사용
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
|
34 |
+
# GPU 설정
|
35 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 명시적으로 cuda:0 지정
|
36 |
|
37 |
# GPU 설정을 try-except로 감싸기
|
38 |
if torch.cuda.is_available():
|
39 |
try:
|
40 |
+
with torch.cuda.device(0):
|
41 |
+
torch.cuda.empty_cache()
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
44 |
except:
|
45 |
print("Warning: Could not configure CUDA settings")
|
46 |
|
|
|
67 |
pillow_heif.register_heif_opener()
|
68 |
pillow_heif.register_avif_opener()
|
69 |
|
|
|
|
|
70 |
# HF 토큰 설정
|
71 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
72 |
if HF_TOKEN is None:
|
|
|
109 |
# GPU 설정을 try-except로 감싸기
|
110 |
try:
|
111 |
if torch.cuda.is_available():
|
112 |
+
pipe = pipe.to("cuda:0") # 명시적으로 cuda:0 지정
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
115 |
|
116 |
class timer:
|
117 |
def __init__(self, method_name="timed process"):
|