Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,47 +18,32 @@ from refiners.fluxion.utils import no_grad
|
|
18 |
from refiners.solutions import BoxSegmenter
|
19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
20 |
from diffusers import FluxPipeline
|
21 |
-
# ์๋จ์ import ์ถ๊ฐ
|
22 |
-
# ์๋จ์ import ์ถ๊ฐ
|
23 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
24 |
-
|
25 |
import gc
|
26 |
-
import torch.cuda.amp as amp
|
27 |
|
28 |
def clear_memory():
|
29 |
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
torch.cuda.empty_cache()
|
32 |
-
torch.cuda.synchronize()
|
33 |
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# GPU
|
36 |
-
if torch.cuda.is_available():
|
37 |
-
torch.cuda.empty_cache()
|
38 |
-
torch.backends.cudnn.benchmark = True
|
39 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
40 |
-
|
41 |
-
# ๋ฉ๋ชจ๋ฆฌ ๋ถํ ์ค์
|
42 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = (
|
43 |
-
"max_split_size_mb:128,"
|
44 |
-
"garbage_collection_threshold:0.8,"
|
45 |
-
"memory_fraction:0.9"
|
46 |
-
)
|
47 |
-
|
48 |
-
|
49 |
-
# ์๋ ํผํฉ ์ ๋ฐ๋(Automatic Mixed Precision) ์ค์
|
50 |
if torch.cuda.is_available():
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
56 |
|
|
|
57 |
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
|
60 |
-
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
61 |
-
|
62 |
|
63 |
def translate_to_english(text: str) -> str:
|
64 |
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
|
@@ -72,8 +57,6 @@ def translate_to_english(text: str) -> str:
|
|
72 |
print(f"Translation error: {str(e)}")
|
73 |
return text
|
74 |
|
75 |
-
|
76 |
-
|
77 |
BoundingBox = tuple[int, int, int, int]
|
78 |
|
79 |
pillow_heif.register_heif_opener()
|
@@ -102,15 +85,13 @@ gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_
|
|
102 |
gd_model = gd_model.to(device=device)
|
103 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
104 |
|
105 |
-
|
106 |
-
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
107 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
108 |
pipe = FluxPipeline.from_pretrained(
|
109 |
"black-forest-labs/FLUX.1-dev",
|
110 |
-
torch_dtype=torch.float16,
|
111 |
use_auth_token=HF_TOKEN
|
112 |
)
|
113 |
-
pipe.enable_attention_slicing(slice_size="auto")
|
114 |
|
115 |
# LoRA ๊ฐ์ค์น ๋ก๋
|
116 |
pipe.load_lora_weights(
|
@@ -122,16 +103,12 @@ pipe.load_lora_weights(
|
|
122 |
)
|
123 |
pipe.fuse_lora(lora_scale=0.125)
|
124 |
|
125 |
-
# GPU
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # ๋จ์ผ GPU ์ฌ์ฉ
|
133 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" # CUDA ๋ฉ๋ชจ๋ฆฌ ํ ๋น ์ค์
|
134 |
-
|
135 |
|
136 |
class timer:
|
137 |
def __init__(self, method_name="timed process"):
|
@@ -210,7 +187,6 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
210 |
width, height = calculate_dimensions(aspect_ratio)
|
211 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
212 |
|
213 |
-
# A100 ๋ฉ๋ชจ๋ฆฌ ์ ํ์ ๊ณ ๋ คํ ์ต๋ ํฌ๊ธฐ ์ค์
|
214 |
max_size = 768
|
215 |
if width > max_size or height > max_size:
|
216 |
ratio = max_size / max(width, height)
|
@@ -218,24 +194,24 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
218 |
height = int(height * ratio)
|
219 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
220 |
|
221 |
-
clear_memory() # ์์ฑ ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
222 |
-
|
223 |
with timer("Background generation"):
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
235 |
return image
|
236 |
except Exception as e:
|
237 |
print(f"Background generation error: {str(e)}")
|
238 |
-
clear_memory() # ์ค๋ฅ ๋ฐ์ ์์๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
239 |
return Image.new('RGB', (512, 512), 'white')
|
240 |
|
241 |
|
@@ -355,21 +331,18 @@ def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
|
355 |
aspect_ratio: str = "1:1", position: str = "bottom-center",
|
356 |
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
|
357 |
try:
|
358 |
-
clear_memory() # ์ฒ๋ฆฌ ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
359 |
if img is None or prompt.strip() == "":
|
360 |
raise gr.Error("Please provide both image and prompt")
|
361 |
|
362 |
print(f"Processing with position: {position}, scale: {scale_percent}")
|
363 |
|
364 |
try:
|
365 |
-
# ํ๋กฌํํธ ๋ฒ์ญ ์๋
|
366 |
prompt = translate_to_english(prompt)
|
367 |
if bg_prompt:
|
368 |
bg_prompt = translate_to_english(bg_prompt)
|
369 |
except Exception as e:
|
370 |
print(f"Translation error (continuing with original text): {str(e)}")
|
371 |
|
372 |
-
# Process the image
|
373 |
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
374 |
|
375 |
if bg_prompt:
|
@@ -390,9 +363,8 @@ def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
|
390 |
except Exception as e:
|
391 |
print(f"Error in process_prompt: {str(e)}")
|
392 |
raise gr.Error(str(e))
|
393 |
-
|
394 |
finally:
|
395 |
-
clear_memory()
|
396 |
|
397 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
398 |
try:
|
|
|
18 |
from refiners.solutions import BoxSegmenter
|
19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
20 |
from diffusers import FluxPipeline
|
|
|
|
|
21 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
22 |
import gc
|
|
|
23 |
|
24 |
def clear_memory():
|
25 |
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
|
|
|
|
|
|
|
26 |
gc.collect()
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
try:
|
29 |
+
torch.cuda.empty_cache()
|
30 |
+
except:
|
31 |
+
pass
|
32 |
|
33 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
if torch.cuda.is_available():
|
35 |
+
try:
|
36 |
+
torch.cuda.empty_cache()
|
37 |
+
torch.backends.cudnn.benchmark = True
|
38 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
39 |
+
except:
|
40 |
+
print("Warning: Could not configure CUDA settings")
|
41 |
|
42 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
43 |
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
|
46 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
|
|
47 |
|
48 |
def translate_to_english(text: str) -> str:
|
49 |
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
|
|
|
57 |
print(f"Translation error: {str(e)}")
|
58 |
return text
|
59 |
|
|
|
|
|
60 |
BoundingBox = tuple[int, int, int, int]
|
61 |
|
62 |
pillow_heif.register_heif_opener()
|
|
|
85 |
gd_model = gd_model.to(device=device)
|
86 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
87 |
|
|
|
|
|
88 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
89 |
pipe = FluxPipeline.from_pretrained(
|
90 |
"black-forest-labs/FLUX.1-dev",
|
91 |
+
torch_dtype=torch.float16,
|
92 |
use_auth_token=HF_TOKEN
|
93 |
)
|
94 |
+
pipe.enable_attention_slicing(slice_size="auto")
|
95 |
|
96 |
# LoRA ๊ฐ์ค์น ๋ก๋
|
97 |
pipe.load_lora_weights(
|
|
|
103 |
)
|
104 |
pipe.fuse_lora(lora_scale=0.125)
|
105 |
|
106 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
107 |
+
try:
|
108 |
+
if torch.cuda.is_available():
|
109 |
+
pipe.to("cuda")
|
110 |
+
except:
|
111 |
+
print("Warning: Could not move pipeline to CUDA")
|
|
|
|
|
|
|
|
|
112 |
|
113 |
class timer:
|
114 |
def __init__(self, method_name="timed process"):
|
|
|
187 |
width, height = calculate_dimensions(aspect_ratio)
|
188 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
189 |
|
|
|
190 |
max_size = 768
|
191 |
if width > max_size or height > max_size:
|
192 |
ratio = max_size / max(width, height)
|
|
|
194 |
height = int(height * ratio)
|
195 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
196 |
|
|
|
|
|
197 |
with timer("Background generation"):
|
198 |
+
try:
|
199 |
+
with torch.inference_mode():
|
200 |
+
image = pipe(
|
201 |
+
prompt=prompt,
|
202 |
+
width=width,
|
203 |
+
height=height,
|
204 |
+
num_inference_steps=8,
|
205 |
+
guidance_scale=4.0,
|
206 |
+
max_length=77,
|
207 |
+
).images[0]
|
208 |
+
except Exception as e:
|
209 |
+
print(f"Pipeline error: {str(e)}")
|
210 |
+
return Image.new('RGB', (width, height), 'white')
|
211 |
+
|
212 |
return image
|
213 |
except Exception as e:
|
214 |
print(f"Background generation error: {str(e)}")
|
|
|
215 |
return Image.new('RGB', (512, 512), 'white')
|
216 |
|
217 |
|
|
|
331 |
aspect_ratio: str = "1:1", position: str = "bottom-center",
|
332 |
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
|
333 |
try:
|
|
|
334 |
if img is None or prompt.strip() == "":
|
335 |
raise gr.Error("Please provide both image and prompt")
|
336 |
|
337 |
print(f"Processing with position: {position}, scale: {scale_percent}")
|
338 |
|
339 |
try:
|
|
|
340 |
prompt = translate_to_english(prompt)
|
341 |
if bg_prompt:
|
342 |
bg_prompt = translate_to_english(bg_prompt)
|
343 |
except Exception as e:
|
344 |
print(f"Translation error (continuing with original text): {str(e)}")
|
345 |
|
|
|
346 |
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
347 |
|
348 |
if bg_prompt:
|
|
|
363 |
except Exception as e:
|
364 |
print(f"Error in process_prompt: {str(e)}")
|
365 |
raise gr.Error(str(e))
|
|
|
366 |
finally:
|
367 |
+
clear_memory()
|
368 |
|
369 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
370 |
try:
|