Flowchart / app.py
ginipick's picture
Update app.py
016b059 verified
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
import spaces
# κΈ°λ³Έ μ„€μ •
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# λͺ¨λΈ λ‘œλ“œ
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# ν”Œλ‘œμš°μ°¨νŠΈ μ˜ˆμ‹œ
EXAMPLES = [
{
"title": "Business Workflow",
"prompt": """A hand-drawn style flowchart, vibrant colors, minimalistic icons.
BUSINESS WORKFLOW
β”œβ”€β”€ START [Green Button ~40px]
β”‚ β”œβ”€β”€ COLLECT REQUIREMENTS [Folder Icon]
β”‚ └── ANALYZE DATA [Chart Icon]
β”œβ”€β”€ IMPLEMENTATION [Coding Symbol ~50px]
β”‚ β”œβ”€β”€ FRONTEND [Browser Icon]
β”‚ └── BACKEND [Server Icon]
β”œβ”€β”€ TEST & INTEGRATION [Gear Icon ~45px]
└── DEPLOY
└── END [Checkered Flag ~40px]""",
"width": 1024,
"height": 1024
},
{
"title": "Software Release Flow",
"prompt": """A hand-drawn style flowchart, pastel colors, arrows between stages.
SOFTWARE RELEASE
β”œβ”€β”€ FEATURE BRANCH [Git Branch Icon ~45px]
β”‚ β”œβ”€β”€ DEVELOPMENT [Code Editor]
β”‚ └── UNIT TEST [Check Mark]
β”œβ”€β”€ MERGE TO MAIN [Pull Request Icon]
β”‚ β”œβ”€β”€ CI/CD [Pipeline Icon ~40px]
β”‚ └── BUILD [Gear Icon]
└── PRODUCTION
└── DEPLOY [Cloud Upload Icon]""",
"width": 1024,
"height": 1024
},
{
"title": "E-Commerce Checkout",
"prompt": """A hand-drawn style flowchart, light watercolor, user journey from cart to payment.
E-COMMERCE CHECKOUT
β”œβ”€β”€ CART [Shopping Cart ~40px]
β”‚ β”œβ”€β”€ LOGIN [User Icon]
β”‚ └── ADDRESS [Location Pin]
β”œβ”€β”€ PAYMENT [Credit Card Icon ~45px]
β”‚ β”œβ”€β”€ VALIDATION [Lock Icon]
β”‚ └── CONFIRMATION [Receipt Icon]
└── ORDER COMPLETE
└── THANK YOU [Smiley Icon]""",
"width": 1024,
"height": 1024
},
{
"title": "Data Pipeline",
"prompt": """A hand-drawn style flowchart, tech-focused, neon highlights, showing data flow.
DATA PIPELINE
β”œβ”€β”€ INGESTION [Database Icon ~50px]
β”‚ β”œβ”€β”€ STREAMING [Kafka Symbol]
β”‚ └── BATCH [CSV/JSON Files]
β”œβ”€β”€ TRANSFORMATION [Gear Icon ~45px]
β”‚ β”œβ”€β”€ CLEANING [Brush Icon]
β”‚ └── AGGREGATION [Bar Graph]
β”œβ”€β”€ STORAGE [Cloud Icon ~50px]
└── ANALYTICS
└── DASHBOARDS [Monitor Icon]""",
"width": 1024,
"height": 1024
},
{
"title": "Machine Learning Lifecycle",
"prompt": """A hand-drawn style flowchart, pastel palette, ML steps from data to deployment.
ML LIFECYCLE
β”œβ”€β”€ DATA COLLECTION [Folder Icon ~45px]
β”‚ β”œβ”€β”€ DATA CLEANING [Soap Icon]
β”‚ └── FEATURE ENGINEERING [Puzzle Icon]
β”œβ”€β”€ MODEL TRAINING [Robot Icon ~50px]
β”‚ β”œβ”€β”€ HYPERPARAM TUNING [Dial Knob]
β”‚ └── EVALUATION [Magnifier Icon]
β”œβ”€β”€ DEPLOYMENT [Cloud Icon ~45px]
└── MONITORING
└── FEEDBACK LOOP [Arrow Circle Icon]""",
"width": 1024,
"height": 1024
}
]
# Convert examples to Gradio format (if needed)
GRADIO_EXAMPLES = [
[example["prompt"], example["width"], example["height"]]
for example in EXAMPLES
]
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0 # ν”Œλ‘œμš°μ°¨νŠΈ ν…μŠ€νŠΈμ— μ§‘μ€‘ν•˜λ˜, 자유둜운 ν‘œν˜„
).images[0]
return image, seed
# CSS μŠ€νƒ€μΌ (κΈ°μ‘΄ ꡬ쑰 μœ μ§€, λͺ…μΉ­λ§Œ 일뢀 μˆ˜μ •)
css = """
.container {
display: flex;
flex-direction: row;
height: 100%;
}
.input-column {
flex: 1;
padding: 20px;
border-right: 2px solid #eee;
max-width: 800px;
}
.examples-column {
flex: 1;
padding: 20px;
overflow-y: auto;
background: #f7f7f7;
}
.title {
text-align: center;
color: #2a2a2a;
padding: 20px;
font-size: 2.5em;
font-weight: bold;
background: linear-gradient(90deg, #f0f0f0 0%, #ffffff 100%);
border-bottom: 3px solid #ddd;
margin-bottom: 30px;
}
.subtitle {
text-align: center;
color: #666;
margin-bottom: 30px;
}
.input-box {
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
margin-bottom: 20px;
width: 100%;
}
.input-box textarea {
width: 100% !important;
min-width: 600px !important;
font-size: 14px !important;
line-height: 1.5 !important;
padding: 12px !important;
}
.example-card {
background: white;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
.example-title {
font-weight: bold;
color: #2a2a2a;
margin-bottom: 10px;
}
.contain {
max-width: 1400px !important;
margin: 0 auto !important;
}
.input-area {
flex: 2 !important;
}
.examples-area {
flex: 1 !important;
}
"""
# Gradio μΈν„°νŽ˜μ΄μŠ€
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<div class="title">GINI Flowchart</div>
<div class="subtitle">Create professional process flowcharts using FLUX AI</div>
""")
with gr.Row(equal_height=True):
# μ™Όμͺ½ μž…λ ₯ 컬럼
with gr.Column(elem_id="input-column", scale=2):
with gr.Group(elem_classes="input-box"):
prompt = gr.Text(
label="Flowchart Prompt",
placeholder="Enter your process flowchart structure...",
lines=10,
elem_classes="prompt-input"
)
run_button = gr.Button("Generate Flowchart", variant="primary")
result = gr.Image(label="Generated Flowchart")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
# 였λ₯Έμͺ½ 예제 컬럼
with gr.Column(elem_id="examples-column", scale=1):
gr.Markdown("### Example Flowcharts")
for example in EXAMPLES:
with gr.Group(elem_classes="example-card"):
gr.Markdown(f"#### {example['title']}")
gr.Markdown(f"```\n{example['prompt']}\n```")
def create_example_handler(ex):
def handler():
return {
prompt: ex["prompt"],
width: ex["width"],
height: ex["height"]
}
return handler
gr.Button("Use This Example", size="sm").click(
fn=create_example_handler(example),
outputs=[prompt, width, height]
)
# 이벀트 바인딩 (λ²„νŠΌ 클릭 & ν…μŠ€νŠΈλ°•μŠ€ μ—”ν„°)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
if __name__ == "__main__":
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=True
)