File size: 9,199 Bytes
6742856
016b059
 
6742856
cb7718b
016b059
2531620
016b059
 
 
2531620
016b059
cb7718b
016b059
 
 
cb7718b
016b059
 
cb7718b
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7718b
016b059
 
 
 
 
cb7718b
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7718b
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531620
016b059
 
 
2531620
016b059
 
 
2531620
016b059
2531620
 
 
cb7718b
016b059
2531620
 
016b059
2531620
016b059
 
0da9692
016b059
 
 
0da9692
016b059
 
2531620
016b059
 
 
 
cb7718b
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da9692
202b398
 
016b059
 
 
 
 
 
 
cb7718b
016b059
 
 
 
 
 
 
 
 
2531620
016b059
 
 
 
 
 
 
 
 
 
202b398
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531620
 
 
 
016b059
 
202b398
016b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7718b
016b059
 
 
 
 
 
202b398
dd5d6cc
 
6742856
016b059
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
import spaces

# κΈ°λ³Έ μ„€μ •
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# λͺ¨λΈ λ‘œλ“œ
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    torch_dtype=dtype
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# ν”Œλ‘œμš°μ°¨νŠΈ μ˜ˆμ‹œ
EXAMPLES = [
    {
        "title": "Business Workflow",
        "prompt": """A hand-drawn style flowchart, vibrant colors, minimalistic icons.
        BUSINESS WORKFLOW
        β”œβ”€β”€ START [Green Button ~40px]
        β”‚   β”œβ”€β”€ COLLECT REQUIREMENTS [Folder Icon]
        β”‚   └── ANALYZE DATA [Chart Icon]
        β”œβ”€β”€ IMPLEMENTATION [Coding Symbol ~50px]
        β”‚   β”œβ”€β”€ FRONTEND [Browser Icon]
        β”‚   └── BACKEND [Server Icon]
        β”œβ”€β”€ TEST & INTEGRATION [Gear Icon ~45px]
        └── DEPLOY
            └── END [Checkered Flag ~40px]""",
        "width": 1024,
        "height": 1024
    },
    {
        "title": "Software Release Flow",
        "prompt": """A hand-drawn style flowchart, pastel colors, arrows between stages.
        SOFTWARE RELEASE
        β”œβ”€β”€ FEATURE BRANCH [Git Branch Icon ~45px]
        β”‚   β”œβ”€β”€ DEVELOPMENT [Code Editor]
        β”‚   └── UNIT TEST [Check Mark]
        β”œβ”€β”€ MERGE TO MAIN [Pull Request Icon]
        β”‚   β”œβ”€β”€ CI/CD [Pipeline Icon ~40px]
        β”‚   └── BUILD [Gear Icon]
        └── PRODUCTION
            └── DEPLOY [Cloud Upload Icon]""",
        "width": 1024,
        "height": 1024
    },
    {
        "title": "E-Commerce Checkout",
        "prompt": """A hand-drawn style flowchart, light watercolor, user journey from cart to payment.
        E-COMMERCE CHECKOUT
        β”œβ”€β”€ CART [Shopping Cart ~40px]
        β”‚   β”œβ”€β”€ LOGIN [User Icon]
        β”‚   └── ADDRESS [Location Pin]
        β”œβ”€β”€ PAYMENT [Credit Card Icon ~45px]
        β”‚   β”œβ”€β”€ VALIDATION [Lock Icon]
        β”‚   └── CONFIRMATION [Receipt Icon]
        └── ORDER COMPLETE
            └── THANK YOU [Smiley Icon]""",
        "width": 1024,
        "height": 1024
    },
    {
        "title": "Data Pipeline",
        "prompt": """A hand-drawn style flowchart, tech-focused, neon highlights, showing data flow.
        DATA PIPELINE
        β”œβ”€β”€ INGESTION [Database Icon ~50px]
        β”‚   β”œβ”€β”€ STREAMING [Kafka Symbol]
        β”‚   └── BATCH [CSV/JSON Files]
        β”œβ”€β”€ TRANSFORMATION [Gear Icon ~45px]
        β”‚   β”œβ”€β”€ CLEANING [Brush Icon]
        β”‚   └── AGGREGATION [Bar Graph]
        β”œβ”€β”€ STORAGE [Cloud Icon ~50px]
        └── ANALYTICS
            └── DASHBOARDS [Monitor Icon]""",
        "width": 1024,
        "height": 1024
    },
    {
        "title": "Machine Learning Lifecycle",
        "prompt": """A hand-drawn style flowchart, pastel palette, ML steps from data to deployment.
        ML LIFECYCLE
        β”œβ”€β”€ DATA COLLECTION [Folder Icon ~45px]
        β”‚   β”œβ”€β”€ DATA CLEANING [Soap Icon]
        β”‚   └── FEATURE ENGINEERING [Puzzle Icon]
        β”œβ”€β”€ MODEL TRAINING [Robot Icon ~50px]
        β”‚   β”œβ”€β”€ HYPERPARAM TUNING [Dial Knob]
        β”‚   └── EVALUATION [Magnifier Icon]
        β”œβ”€β”€ DEPLOYMENT [Cloud Icon ~45px]
        └── MONITORING
            └── FEEDBACK LOOP [Arrow Circle Icon]""",
        "width": 1024,
        "height": 1024
    }
]

# Convert examples to Gradio format (if needed)
GRADIO_EXAMPLES = [
    [example["prompt"], example["width"], example["height"]]
    for example in EXAMPLES
]

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0  # ν”Œλ‘œμš°μ°¨νŠΈ ν…μŠ€νŠΈμ— μ§‘μ€‘ν•˜λ˜, 자유둜운 ν‘œν˜„
    ).images[0]
    return image, seed

# CSS μŠ€νƒ€μΌ (κΈ°μ‘΄ ꡬ쑰 μœ μ§€, λͺ…μΉ­λ§Œ 일뢀 μˆ˜μ •)
css = """
.container {
    display: flex;
    flex-direction: row;
    height: 100%;
}
.input-column {
    flex: 1;
    padding: 20px;
    border-right: 2px solid #eee;
    max-width: 800px;
}
.examples-column {
    flex: 1;
    padding: 20px;
    overflow-y: auto;
    background: #f7f7f7;
}
.title {
    text-align: center;
    color: #2a2a2a;
    padding: 20px;
    font-size: 2.5em;
    font-weight: bold;
    background: linear-gradient(90deg, #f0f0f0 0%, #ffffff 100%);
    border-bottom: 3px solid #ddd;
    margin-bottom: 30px;
}
.subtitle {
    text-align: center;
    color: #666;
    margin-bottom: 30px;
}
.input-box {
    background: white;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0,0,0,0.1);
    margin-bottom: 20px;
    width: 100%;
}
.input-box textarea {
    width: 100% !important;
    min-width: 600px !important;
    font-size: 14px !important;
    line-height: 1.5 !important;
    padding: 12px !important;
}
.example-card {
    background: white;
    padding: 15px;
    margin: 10px 0;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
.example-title {
    font-weight: bold;
    color: #2a2a2a;
    margin-bottom: 10px;
}
.contain {
    max-width: 1400px !important;
    margin: 0 auto !important;
}
.input-area {
    flex: 2 !important;
}
.examples-area {
    flex: 1 !important;
}
"""

# Gradio μΈν„°νŽ˜μ΄μŠ€
with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        <div class="title">GINI Flowchart</div>
        <div class="subtitle">Create professional process flowcharts using FLUX AI</div>
        """)

    with gr.Row(equal_height=True):
        # μ™Όμͺ½ μž…λ ₯ 컬럼
        with gr.Column(elem_id="input-column", scale=2):
            with gr.Group(elem_classes="input-box"):
                prompt = gr.Text(
                    label="Flowchart Prompt",
                    placeholder="Enter your process flowchart structure...",
                    lines=10,
                    elem_classes="prompt-input"
                )
                run_button = gr.Button("Generate Flowchart", variant="primary")
                result = gr.Image(label="Generated Flowchart")
            
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        # 였λ₯Έμͺ½ 예제 컬럼
        with gr.Column(elem_id="examples-column", scale=1):
            gr.Markdown("### Example Flowcharts")
            for example in EXAMPLES:
                with gr.Group(elem_classes="example-card"):
                    gr.Markdown(f"#### {example['title']}")
                    gr.Markdown(f"```\n{example['prompt']}\n```")
                    
                    def create_example_handler(ex):
                        def handler():
                            return {
                                prompt: ex["prompt"],
                                width: ex["width"],
                                height: ex["height"]
                            }
                        return handler
                    
                    gr.Button("Use This Example", size="sm").click(
                        fn=create_example_handler(example),
                        outputs=[prompt, width, height]
                    )

    # 이벀트 바인딩 (λ²„νŠΌ 클릭 & ν…μŠ€νŠΈλ°•μŠ€ μ—”ν„°)
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed]
    )

if __name__ == "__main__":
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        debug=True
    )