|
import spaces |
|
import gradio as gr |
|
import random |
|
import os |
|
import time |
|
import torch |
|
from diffusers import FluxPipeline |
|
from transformers import pipeline |
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {DEVICE}") |
|
|
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_WIDTH = 1024 |
|
DEFAULT_GUIDANCE_SCALE = 3.5 |
|
DEFAULT_NUM_INFERENCE_STEPS = 15 |
|
DEFAULT_MAX_SEQUENCE_LENGTH = 512 |
|
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN") |
|
|
|
|
|
CACHED_PIPE = None |
|
CACHED_LLM_PIPE = None |
|
|
|
def load_llm_pipeline(): |
|
"""Load the LLM pipeline for prompt enhancement""" |
|
global CACHED_LLM_PIPE |
|
if CACHED_LLM_PIPE is not None: |
|
return CACHED_LLM_PIPE |
|
|
|
print("Loading LLM pipeline for prompt enhancement...") |
|
try: |
|
|
|
|
|
llm_pipe = pipeline( |
|
"text-generation", |
|
model="microsoft/Phi-3-mini-4k-instruct", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
CACHED_LLM_PIPE = llm_pipe |
|
print("LLM pipeline loaded successfully") |
|
return llm_pipe |
|
except Exception as e: |
|
print(f"Error loading LLM pipeline: {e}") |
|
|
|
try: |
|
llm_pipe = pipeline( |
|
"text-generation", |
|
model="gpt2", |
|
device_map="auto" |
|
) |
|
CACHED_LLM_PIPE = llm_pipe |
|
print("Loaded fallback LLM pipeline (GPT-2)") |
|
return llm_pipe |
|
except Exception as e2: |
|
print(f"Error loading fallback LLM pipeline: {e2}") |
|
return None |
|
|
|
def enhance_prompt(prompt, progress=gr.Progress()): |
|
"""Enhance the prompt using LLM""" |
|
if not prompt: |
|
return prompt, "Please enter a prompt first." |
|
|
|
progress(0.3, desc="Enhancing prompt with AI...") |
|
|
|
try: |
|
llm_pipe = load_llm_pipeline() |
|
if llm_pipe is None: |
|
return prompt, "LLM pipeline not available, using original prompt." |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful assistant that enhances image generation prompts. Make prompts more detailed, artistic, and visually descriptive while keeping the core concept. Add details about lighting, style, colors, mood, and composition. Keep the enhanced prompt under 200 words." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f"Enhance this image generation prompt, making it more detailed and artistic: '{prompt}'" |
|
} |
|
] |
|
|
|
|
|
result = llm_pipe( |
|
messages, |
|
max_new_tokens=200, |
|
temperature=0.7, |
|
do_sample=True, |
|
top_p=0.9 |
|
) |
|
|
|
|
|
if isinstance(result, list) and len(result) > 0: |
|
enhanced = result[0].get('generated_text', '') |
|
|
|
if isinstance(enhanced, list): |
|
for msg in enhanced: |
|
if msg.get('role') == 'assistant': |
|
enhanced = msg.get('content', prompt) |
|
break |
|
elif isinstance(enhanced, str): |
|
|
|
enhanced = enhanced.strip() |
|
if enhanced.startswith("Enhanced prompt:"): |
|
enhanced = enhanced.replace("Enhanced prompt:", "").strip() |
|
|
|
if enhanced and enhanced != prompt: |
|
return enhanced, "Prompt enhanced successfully!" |
|
else: |
|
return prompt, "Using original prompt." |
|
else: |
|
return prompt, "Enhancement failed, using original prompt." |
|
|
|
except Exception as e: |
|
print(f"Error during prompt enhancement: {e}") |
|
return prompt, f"Enhancement error: {e}. Using original prompt." |
|
|
|
def load_bnb_4bit_pipeline(): |
|
"""Load the 4-bit quantized pipeline""" |
|
global CACHED_PIPE |
|
if CACHED_PIPE is not None: |
|
return CACHED_PIPE |
|
|
|
print("Loading 4-bit BNB pipeline...") |
|
MODEL_ID = "derekl35/FLUX.1-dev-nf4" |
|
|
|
start_time = time.time() |
|
try: |
|
pipe = FluxPipeline.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
end_time = time.time() |
|
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 |
|
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB") |
|
CACHED_PIPE = pipe |
|
return pipe |
|
except Exception as e: |
|
print(f"Error loading 4-bit BNB pipeline: {e}") |
|
raise |
|
|
|
@spaces.GPU(duration=240) |
|
def generate_image(prompt, use_enhancement=False, progress=gr.Progress(track_tqdm=True)): |
|
"""Generate image using 4-bit quantized model with optional prompt enhancement""" |
|
if not prompt: |
|
return None, prompt, "Please enter a prompt." |
|
|
|
enhanced_prompt = prompt |
|
enhancement_status = "" |
|
|
|
|
|
if use_enhancement: |
|
enhanced_prompt, enhancement_status = enhance_prompt(prompt, progress) |
|
|
|
progress(0.5, desc="Loading 4-bit quantized model...") |
|
|
|
try: |
|
|
|
pipe = load_bnb_4bit_pipeline() |
|
|
|
|
|
pipe_kwargs = { |
|
"prompt": enhanced_prompt, |
|
"height": DEFAULT_HEIGHT, |
|
"width": DEFAULT_WIDTH, |
|
"guidance_scale": DEFAULT_GUIDANCE_SCALE, |
|
"num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS, |
|
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH, |
|
} |
|
|
|
|
|
seed = random.getrandbits(64) |
|
print(f"Using seed: {seed}") |
|
|
|
progress(0.7, desc="Generating image...") |
|
|
|
|
|
gen_start_time = time.time() |
|
image = pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images[0] |
|
gen_end_time = time.time() |
|
|
|
print(f"Image generated in {gen_end_time - gen_start_time:.2f} seconds") |
|
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 |
|
print(f"Memory reserved: {mem_reserved:.2f} GB") |
|
|
|
status_msg = f"Generation complete! (Seed: {seed})" |
|
if enhancement_status: |
|
status_msg = f"{enhancement_status} | {status_msg}" |
|
|
|
return image, enhanced_prompt, status_msg |
|
|
|
except Exception as e: |
|
print(f"Error during generation: {e}") |
|
return None, enhanced_prompt, f"Error: {e}" |
|
|
|
@spaces.GPU(duration=60) |
|
def enhance_only(prompt, progress=gr.Progress()): |
|
"""Only enhance the prompt without generating an image""" |
|
enhanced_prompt, status = enhance_prompt(prompt, progress) |
|
return enhanced_prompt, status |
|
|
|
|
|
with gr.Blocks(title="FLUXllama Enhanced", theme=gr.themes.Soft()) as demo: |
|
gr.HTML( |
|
""" |
|
<div style='text-align: center; margin-bottom: 20px;'> |
|
<h1>FLUXllama Enhanced</h1> |
|
<p>FLUX.1-dev 4-bit Quantized Version with AI Prompt Enhancement</p> |
|
</div> |
|
""" |
|
) |
|
|
|
gr.HTML( |
|
""" |
|
<div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'> |
|
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank"> |
|
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge"> |
|
</a> |
|
|
|
<a href="https://discord.gg/openfreeai" target="_blank"> |
|
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge"> |
|
</a> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Column(): |
|
prompt_input = gr.Textbox( |
|
label="Enter your prompt", |
|
placeholder="e.g., A photorealistic portrait of an astronaut on Mars", |
|
lines=3 |
|
) |
|
|
|
with gr.Row(): |
|
enhance_checkbox = gr.Checkbox( |
|
label="π¨ Use AI Prompt Enhancement", |
|
value=False, |
|
info="Automatically enhance your prompt for better results" |
|
) |
|
enhance_only_button = gr.Button("β¨ Enhance Only", variant="secondary", scale=1) |
|
|
|
enhanced_prompt_display = gr.Textbox( |
|
label="Enhanced Prompt (will appear after enhancement)", |
|
lines=3, |
|
interactive=False, |
|
visible=True |
|
) |
|
|
|
with gr.Row(): |
|
generate_button = gr.Button("π Generate Image", variant="primary", scale=2) |
|
generate_enhanced_button = gr.Button("π¨ Enhance & Generate", variant="primary", scale=2) |
|
|
|
output_image = gr.Image( |
|
label="Generated Image (4-bit Quantized)", |
|
type="pil", |
|
height=600 |
|
) |
|
|
|
status_text = gr.Textbox( |
|
label="Status", |
|
interactive=False, |
|
lines=1 |
|
) |
|
|
|
|
|
generate_button.click( |
|
fn=lambda p: generate_image(p, use_enhancement=False), |
|
inputs=[prompt_input], |
|
outputs=[output_image, enhanced_prompt_display, status_text] |
|
) |
|
|
|
generate_enhanced_button.click( |
|
fn=lambda p: generate_image(p, use_enhancement=True), |
|
inputs=[prompt_input], |
|
outputs=[output_image, enhanced_prompt_display, status_text] |
|
) |
|
|
|
enhance_only_button.click( |
|
fn=enhance_only, |
|
inputs=[prompt_input], |
|
outputs=[enhanced_prompt_display, status_text] |
|
) |
|
|
|
|
|
prompt_input.submit( |
|
fn=generate_image, |
|
inputs=[prompt_input, enhance_checkbox], |
|
outputs=[output_image, enhanced_prompt_display, status_text] |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
"A photorealistic portrait of an astronaut on Mars", |
|
"Water-color painting of a cat wearing sunglasses", |
|
"Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8K", |
|
"A majestic dragon flying over a medieval castle at sunset", |
|
"Abstract art representing the concept of time and space", |
|
"Detailed oil painting of a steampunk clockwork city", |
|
"Underwater scene with bioluminescent creatures in deep ocean", |
|
"Japanese garden in autumn with falling maple leaves" |
|
], |
|
inputs=prompt_input |
|
) |
|
|
|
gr.HTML( |
|
""" |
|
<div style='text-align: center; margin-top: 20px; padding: 20px; background-color: #f0f0f0; border-radius: 10px;'> |
|
<h3>β¨ Prompt Enhancement Feature</h3> |
|
<p>This app now includes AI-powered prompt enhancement! The enhancement feature will:</p> |
|
<ul style='text-align: left; display: inline-block;'> |
|
<li>Add artistic details and visual descriptions</li> |
|
<li>Specify lighting, mood, and atmosphere</li> |
|
<li>Include style and composition elements</li> |
|
<li>Make your prompts more effective for image generation</li> |
|
</ul> |
|
<p><strong>How to use:</strong></p> |
|
<p>1. Enter a simple prompt</p> |
|
<p>2. Click "β¨ Enhance Only" to preview the enhanced version</p> |
|
<p>3. Click "π¨ Enhance & Generate" to enhance and generate in one step</p> |
|
<p>4. Or check the enhancement checkbox and click Generate</p> |
|
</div> |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |