File size: 12,174 Bytes
8398621 00d591a 6e62cd2 915f4ae 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 915f4ae 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 423b272 8398621 eb9629d 8398621 423b272 8398621 423b272 eb9629d a7a4022 8398621 a7a4022 8398621 423b272 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 3f9f026 a7a4022 8398621 00d591a d9c9363 eb9629d 8398621 eb9629d d9c9363 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 8398621 eb9629d 915f4ae 8398621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import spaces
import gradio as gr
import random
import os
import time
import torch
from diffusers import FluxPipeline
from transformers import pipeline
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
# Cache for the pipelines
CACHED_PIPE = None
CACHED_LLM_PIPE = None
def load_llm_pipeline():
"""Load the LLM pipeline for prompt enhancement"""
global CACHED_LLM_PIPE
if CACHED_LLM_PIPE is not None:
return CACHED_LLM_PIPE
print("Loading LLM pipeline for prompt enhancement...")
try:
# Note: Using a smaller model that's actually available
# You can replace this with "openai/gpt-oss-120b" if you have access
llm_pipe = pipeline(
"text-generation",
model="microsoft/Phi-3-mini-4k-instruct", # Alternative smaller model
torch_dtype=torch.bfloat16,
device_map="auto"
)
CACHED_LLM_PIPE = llm_pipe
print("LLM pipeline loaded successfully")
return llm_pipe
except Exception as e:
print(f"Error loading LLM pipeline: {e}")
# Fallback to a simpler model if the main one fails
try:
llm_pipe = pipeline(
"text-generation",
model="gpt2", # Fallback to GPT-2
device_map="auto"
)
CACHED_LLM_PIPE = llm_pipe
print("Loaded fallback LLM pipeline (GPT-2)")
return llm_pipe
except Exception as e2:
print(f"Error loading fallback LLM pipeline: {e2}")
return None
def enhance_prompt(prompt, progress=gr.Progress()):
"""Enhance the prompt using LLM"""
if not prompt:
return prompt, "Please enter a prompt first."
progress(0.3, desc="Enhancing prompt with AI...")
try:
llm_pipe = load_llm_pipeline()
if llm_pipe is None:
return prompt, "LLM pipeline not available, using original prompt."
# Create enhancement prompt
messages = [
{
"role": "system",
"content": "You are a helpful assistant that enhances image generation prompts. Make prompts more detailed, artistic, and visually descriptive while keeping the core concept. Add details about lighting, style, colors, mood, and composition. Keep the enhanced prompt under 200 words."
},
{
"role": "user",
"content": f"Enhance this image generation prompt, making it more detailed and artistic: '{prompt}'"
}
]
# Generate enhanced prompt
result = llm_pipe(
messages,
max_new_tokens=200,
temperature=0.7,
do_sample=True,
top_p=0.9
)
# Extract the enhanced prompt from the response
if isinstance(result, list) and len(result) > 0:
enhanced = result[0].get('generated_text', '')
# Extract only the assistant's response
if isinstance(enhanced, list):
for msg in enhanced:
if msg.get('role') == 'assistant':
enhanced = msg.get('content', prompt)
break
elif isinstance(enhanced, str):
# Clean up the response if needed
enhanced = enhanced.strip()
if enhanced.startswith("Enhanced prompt:"):
enhanced = enhanced.replace("Enhanced prompt:", "").strip()
if enhanced and enhanced != prompt:
return enhanced, "Prompt enhanced successfully!"
else:
return prompt, "Using original prompt."
else:
return prompt, "Enhancement failed, using original prompt."
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return prompt, f"Enhancement error: {e}. Using original prompt."
def load_bnb_4bit_pipeline():
"""Load the 4-bit quantized pipeline"""
global CACHED_PIPE
if CACHED_PIPE is not None:
return CACHED_PIPE
print("Loading 4-bit BNB pipeline...")
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPE = pipe
return pipe
except Exception as e:
print(f"Error loading 4-bit BNB pipeline: {e}")
raise
@spaces.GPU(duration=240)
def generate_image(prompt, use_enhancement=False, progress=gr.Progress(track_tqdm=True)):
"""Generate image using 4-bit quantized model with optional prompt enhancement"""
if not prompt:
return None, prompt, "Please enter a prompt."
enhanced_prompt = prompt
enhancement_status = ""
# Enhance prompt if requested
if use_enhancement:
enhanced_prompt, enhancement_status = enhance_prompt(prompt, progress)
progress(0.5, desc="Loading 4-bit quantized model...")
try:
# Load the 4-bit pipeline
pipe = load_bnb_4bit_pipeline()
# Set up generation parameters
pipe_kwargs = {
"prompt": enhanced_prompt,
"height": DEFAULT_HEIGHT,
"width": DEFAULT_WIDTH,
"guidance_scale": DEFAULT_GUIDANCE_SCALE,
"num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
}
# Generate seed
seed = random.getrandbits(64)
print(f"Using seed: {seed}")
progress(0.7, desc="Generating image...")
# Generate image
gen_start_time = time.time()
image = pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images[0]
gen_end_time = time.time()
print(f"Image generated in {gen_end_time - gen_start_time:.2f} seconds")
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"Memory reserved: {mem_reserved:.2f} GB")
status_msg = f"Generation complete! (Seed: {seed})"
if enhancement_status:
status_msg = f"{enhancement_status} | {status_msg}"
return image, enhanced_prompt, status_msg
except Exception as e:
print(f"Error during generation: {e}")
return None, enhanced_prompt, f"Error: {e}"
@spaces.GPU(duration=60)
def enhance_only(prompt, progress=gr.Progress()):
"""Only enhance the prompt without generating an image"""
enhanced_prompt, status = enhance_prompt(prompt, progress)
return enhanced_prompt, status
# Create Gradio interface
with gr.Blocks(title="FLUXllama Enhanced", theme=gr.themes.Soft()) as demo:
gr.HTML(
"""
<div style='text-align: center; margin-bottom: 20px;'>
<h1>FLUXllama Enhanced</h1>
<p>FLUX.1-dev 4-bit Quantized Version with AI Prompt Enhancement</p>
</div>
"""
)
gr.HTML(
"""
<div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
"""
)
with gr.Column():
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="e.g., A photorealistic portrait of an astronaut on Mars",
lines=3
)
with gr.Row():
enhance_checkbox = gr.Checkbox(
label="π¨ Use AI Prompt Enhancement",
value=False,
info="Automatically enhance your prompt for better results"
)
enhance_only_button = gr.Button("β¨ Enhance Only", variant="secondary", scale=1)
enhanced_prompt_display = gr.Textbox(
label="Enhanced Prompt (will appear after enhancement)",
lines=3,
interactive=False,
visible=True
)
with gr.Row():
generate_button = gr.Button("π Generate Image", variant="primary", scale=2)
generate_enhanced_button = gr.Button("π¨ Enhance & Generate", variant="primary", scale=2)
output_image = gr.Image(
label="Generated Image (4-bit Quantized)",
type="pil",
height=600
)
status_text = gr.Textbox(
label="Status",
interactive=False,
lines=1
)
# Connect components
generate_button.click(
fn=lambda p: generate_image(p, use_enhancement=False),
inputs=[prompt_input],
outputs=[output_image, enhanced_prompt_display, status_text]
)
generate_enhanced_button.click(
fn=lambda p: generate_image(p, use_enhancement=True),
inputs=[prompt_input],
outputs=[output_image, enhanced_prompt_display, status_text]
)
enhance_only_button.click(
fn=enhance_only,
inputs=[prompt_input],
outputs=[enhanced_prompt_display, status_text]
)
# Enter key to submit (with enhancement checkbox consideration)
prompt_input.submit(
fn=generate_image,
inputs=[prompt_input, enhance_checkbox],
outputs=[output_image, enhanced_prompt_display, status_text]
)
# Example prompts
gr.Examples(
examples=[
"A photorealistic portrait of an astronaut on Mars",
"Water-color painting of a cat wearing sunglasses",
"Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8K",
"A majestic dragon flying over a medieval castle at sunset",
"Abstract art representing the concept of time and space",
"Detailed oil painting of a steampunk clockwork city",
"Underwater scene with bioluminescent creatures in deep ocean",
"Japanese garden in autumn with falling maple leaves"
],
inputs=prompt_input
)
gr.HTML(
"""
<div style='text-align: center; margin-top: 20px; padding: 20px; background-color: #f0f0f0; border-radius: 10px;'>
<h3>β¨ Prompt Enhancement Feature</h3>
<p>This app now includes AI-powered prompt enhancement! The enhancement feature will:</p>
<ul style='text-align: left; display: inline-block;'>
<li>Add artistic details and visual descriptions</li>
<li>Specify lighting, mood, and atmosphere</li>
<li>Include style and composition elements</li>
<li>Make your prompts more effective for image generation</li>
</ul>
<p><strong>How to use:</strong></p>
<p>1. Enter a simple prompt</p>
<p>2. Click "β¨ Enhance Only" to preview the enhanced version</p>
<p>3. Click "π¨ Enhance & Generate" to enhance and generate in one step</p>
<p>4. Or check the enhancement checkbox and click Generate</p>
</div>
"""
)
if __name__ == "__main__":
demo.launch(share=True) |