Every-Text / app.py
ginipick's picture
Update app.py
0399de8 verified
raw
history blame
12.9 kB
import os
import time
from os import path
import tempfile
import uuid
import base64
import mimetypes
import json
import io
import random
import string
import torch
from PIL import Image
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Diffusers ๊ด€๋ จ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
import gradio as gr
from diffusers import FluxPipeline
# Google GenAI ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
from google import genai
from google.genai import types
#######################################
# 0. ํ™˜๊ฒฝ์„ค์ •
#######################################
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
CACHE_PATH = path.join(BASE_DIR, "models")
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
os.environ["HF_HUB_CACHE"] = CACHE_PATH
os.environ["HF_HOME"] = CACHE_PATH
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"[TIMER] {self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s")
#######################################
# 1. FLUX ํŒŒ์ดํ”„๋ผ์ธ ๋กœ๋“œ
#######################################
if not path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
#######################################
# 2. Google GenAI (Gemini) - ์ด๋ฏธ์ง€ ๋ณ€ํ™˜ ํ•จ์ˆ˜
#######################################
def save_binary_file(file_name, data):
with open(file_name, "wb") as f:
f.write(data)
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
"""Gemini ๋ชจ๋ธ์„ ํ†ตํ•ด ์ด๋ฏธ์ง€ ๋‚ด๋ถ€ ํ…์ŠคํŠธ๋ฅผ ๋ณ€๊ฒฝ."""
api_key = os.getenv("GAPI_TOKEN", None)
if not api_key:
raise ValueError(
"GAPI_TOKEN ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. "
"Google GenAI API๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” GAPI_TOKEN์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค."
)
client = genai.Client(api_key=api_key)
files = [client.files.upload(file=file_name)]
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=files[0].uri,
mime_type=files[0].mime_type,
),
types.Part.from_text(text=text),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
)
text_response = ""
image_path = None
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
if not chunk.candidates or not chunk.candidates[0].content:
continue
candidate = chunk.candidates[0].content.parts[0]
if candidate.inline_data:
save_binary_file(temp_path, candidate.inline_data.data)
print(f"[DEBUG] Gemini returned image -> {temp_path}")
image_path = temp_path
break
else:
text_response += chunk.text + "\n"
del files
return image_path, text_response
#######################################
# 3. Diffusion (Flux)์šฉ ํ•จ์ˆ˜
#######################################
def generate_random_letters(length: int) -> str:
"""length ๊ธธ์ด๋งŒํผ ๋Œ€์†Œ๋ฌธ์ž ์•ŒํŒŒ๋ฒณ์„ ๋ฌด์ž‘์œ„๋กœ ์ƒ์„ฑ."""
letters = string.ascii_lowercase + string.ascii_uppercase
return "".join(random.choice(letters) for _ in range(length))
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str:
"""
ํ”„๋กฌํ”„ํŠธ ๋‚ด <text1>, <text2>, <text3>๋ฅผ
๊ฐ๊ฐ r1, r2, r3๋กœ ์น˜ํ™˜.
- <text1>์€ ํ•„์ˆ˜ (์—†์œผ๋ฉด ์ž๋™์œผ๋กœ ๋’ค์— ๋ถ™์ž„).
- <text2>, <text3>๋Š” ์žˆ์œผ๋ฉด ์น˜ํ™˜, ์—†์œผ๋ฉด ๋ฌด์‹œ.
"""
# 1) <text1>์€ ํ•„์ˆ˜
if "<text1>" in prompt:
prompt = prompt.replace("<text1>", r1)
else:
# ์ž๋™ ๋ง๋ถ™์ž„
prompt = f"{prompt} with clear readable text that says '{r1}'"
# 2) <text2>, <text3>๋Š” ์„ ํƒ
if "<text2>" in prompt:
prompt = prompt.replace("<text2>", r2)
if "<text3>" in prompt:
prompt = prompt.replace("<text3>", r3)
return prompt
def generate_initial_image(prompt, random1, random2, random3, height, width, steps, scale, seed):
"""
Flux ํŒŒ์ดํ”„๋ผ์ธ์„ ์ด์šฉํ•ด (r1, r2, r3)๊ฐ€ ๋“ค์–ด๊ฐ„ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑ.
"""
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"):
result = pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scale),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
return result
def change_multi_text_in_image(original_image, random1, final1, random2, final2, random3, final3):
"""
Gemini๋ฅผ ํ†ตํ•ด, ์ด๋ฏธ์ง€ ์•ˆ์˜ r1->final1, r2->final2, r3->final3 ์‹์œผ๋กœ ํ…์ŠคํŠธ ๊ต์ฒด.
- r2, final2 (๋˜๋Š” r3, final3)๊ฐ€ ๋นˆ ๋ฌธ์ž์—ด์ด๋ฉด ํ•ด๋‹น ๊ต์ฒด๋Š” ๊ฑด๋„ˆ๋œ€.
"""
# ๊ต์ฒด ์ง€์‹œ๋ฌธ ๋งŒ๋“ค๊ธฐ
instructions = []
if random1 and final1:
instructions.append(f"Change any text reading '{random1}' in this image to '{final1}'.")
if random2 and final2:
instructions.append(f"Change any text reading '{random2}' in this image to '{final2}'.")
if random3 and final3:
instructions.append(f"Change any text reading '{random3}' in this image to '{final3}'.")
# ๋งŒ์•ฝ ๊ต์ฒด ์ง€์‹œ๋ฌธ์ด ์—†๋‹ค๋ฉด ๊ทธ๋ƒฅ return original_image
if not instructions:
print("[WARN] No text changes requested!")
return original_image
full_instruction = " ".join(instructions)
try:
# ์ž„์‹œ ํŒŒ์ผ์— original_image ์ €์žฅ
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
original_path = tmp.name
original_image.save(original_path)
image_path, text_response = generate_by_google_genai(
text=full_instruction,
file_name=original_path
)
if image_path:
with open(image_path, "rb") as f:
image_data = f.read()
new_img = Image.open(io.BytesIO(image_data))
return new_img
else:
# ์ด๋ฏธ์ง€ ์—†์ด ํ…์ŠคํŠธ๋งŒ ์˜จ ๊ฒฝ์šฐ
print("[WARN] Gemini returned only text:", text_response)
return original_image
except Exception as e:
raise gr.Error(f"Error: {e}")
#######################################
# 4. ๋ฉ”์ธ ํ”„๋กœ์„ธ์Šค ํ•จ์ˆ˜
#######################################
def run_process(
prompt,
final_text1,
final_text2,
final_text3,
height,
width,
steps,
scale,
seed
):
"""
1) final_text1(ํ•„์ˆ˜), final_text2, final_text3(์˜ต์…˜) ๊ฐ๊ฐ ๊ธธ์ด์— ๋งž์ถฐ ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ ๋งŒ๋“ค๊ธฐ.
2) prompt ๋‚ด <text1>, <text2>, <text3> ์น˜ํ™˜ -> Flux๋กœ 1์ฐจ(๋žœ๋ค) ์ด๋ฏธ์ง€.
3) Gemini ํ˜ธ์ถœ -> r1->final_text1, r2->final_text2, r3->final_text3 ๊ต์ฒด -> ์ตœ์ข… ์ด๋ฏธ์ง€.
"""
# (A) ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ
r1 = generate_random_letters(len(final_text1)) if final_text1 else ""
r2 = generate_random_letters(len(final_text2)) if final_text2 else ""
r3 = generate_random_letters(len(final_text3)) if final_text3 else ""
# (B) ํ”„๋กฌํ”„ํŠธ ์น˜ํ™˜
final_prompt = fill_prompt_with_random_texts(prompt, r1, r2, r3)
print(f"[DEBUG] final_prompt = {final_prompt}")
# (C) 1์ฐจ ์ด๋ฏธ์ง€ (๋žœ๋ค ํ…์ŠคํŠธ)
random_image = generate_initial_image(final_prompt, r1, r2, r3, height, width, steps, scale, seed)
# (D) 2์ฐจ ์ด๋ฏธ์ง€ (์‹ค์ œ ํ…์ŠคํŠธ)
final_image = change_multi_text_in_image(
random_image,
r1, final_text1,
r2, final_text2,
r3, final_text3
)
return [random_image, final_image]
#######################################
# 5. Gradio UI
#######################################
with gr.Blocks(title="Flux + Google GenAI (Up to 3 Text placeholders)") as demo:
gr.Markdown(
"""
# Flux + Google GenAI: ์ตœ๋Œ€ 3๊ฐœ์˜ `<text>` ๊ต์ฒด
## ์‚ฌ์šฉ ๋ฐฉ๋ฒ•
1. ์•„๋ž˜ Prompt์— `<text1>`, `<text2>`, `<text3>`๋ฅผ ์ตœ๋Œ€ 3๊ฐœ๊นŒ์ง€ ๋ฐฐ์น˜ ๊ฐ€๋Šฅ.
- ์˜ˆ) "A poster with <text1> in large letters, also <text2> in the corner"
- **<text1>์€ ํ•„์ˆ˜**(์—†์œผ๋ฉด ์ž๋™์œผ๋กœ ๋ฌธ๊ตฌ๊ฐ€ ๋’ค์— ๋ถ™์Œ)
- <text2>, <text3>๋Š” ๋„ฃ์–ด๋„ ๋˜๊ณ , ์•ˆ ๋„ฃ์–ด๋„ ๋จ.
2. "New Text #1" (ํ•„์ˆ˜), "New Text #2", "New Text #3"๋ฅผ ์ž…๋ ฅ.
- #2, #3๋Š” ๋น„์›Œ ๋‘๋ฉด ํ•ด๋‹น ์ž๋ฆฌ ๊ต์ฒด ์—†์Œ.
3. "Generate Images" ๋ฒ„ํŠผ โ†’
(1) `<text1>`, `<text2>`, `<text3>` ์ž๋ฆฌ์— (๋˜๋Š” ์ž๋™์œผ๋กœ) **๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ** ๋„ฃ์€ 1์ฐจ ์ด๋ฏธ์ง€ ์ƒ์„ฑ
(2) ์ด์–ด Gemini ๋ชจ๋ธ์„ ํ†ตํ•ด ๋ฌด์ž‘์œ„ ์•ŒํŒŒ๋ฒณ โ†’ ์‹ค์ œ "New Text #1/2/3" ๋ณ€๊ฒฝํ•œ 2์ฐจ ์ด๋ฏธ์ง€
- **๋‘ ์ด๋ฏธ์ง€**(๋žœ๋ค ํ…์ŠคํŠธ โ†’ ์ตœ์ข… ํ…์ŠคํŠธ)๊ฐ€ ์ˆœ์„œ๋Œ€๋กœ ์ถœ๋ ฅ๋ฉ๋‹ˆ๋‹ค.
---
"""
)
# ์˜ˆ์‹œ 5๊ฐœ
examples = [
[
"A futuristic billboard shows <text1> and a small sign <text2> on the left side. <text3> is a hidden watermark.",
"HELLO", "WELCOME", "2025"
],
[
"A fantasy poster with <text1> and <text2> in stylized letters, plus a tiny note <text3> at the bottom.",
"Dragons", "MagicRealm", "Beware!"
],
[
"A neon sign reading <text1>, with a secondary text <text2> below. <text3> might appear in the corner.",
"OPEN", "24HOUR", "NoSmoking"
],
[
"A big invitation card with main text <text1>, subtitle <text2>, signature <text3> in cursive.",
"Birthday Party", "Today Only", "From Your Friend"
],
[
"A large graffiti wall with <text1> in bold letters, plus <text2> and <text3> near the edges.",
"FREEDOM", "HOPE", "LOVE"
]
]
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
lines=3,
label="Prompt (use `<text1>`, `<text2>`, `<text3>` as needed)",
placeholder="Ex) A poster with <text1>, plus a line <text2>, etc."
)
final_text1 = gr.Textbox(
label="New Text #1 (Required)",
placeholder="Ex) HELLO"
)
final_text2 = gr.Textbox(
label="New Text #2 (Optional)",
placeholder="Ex) WELCOME"
)
final_text3 = gr.Textbox(
label="New Text #3 (Optional)",
placeholder="Ex) 2025 or anything"
)
with gr.Accordion("Advanced Settings", open=False):
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5)
seed = gr.Number(label="Seed (reproducibility)", value=1234, precision=0)
run_btn = gr.Button("Generate Images", variant="primary")
gr.Examples(
examples=examples,
inputs=[prompt_input, final_text1, final_text2, final_text3],
label="Click to load example"
)
with gr.Column():
random_image_output = gr.Image(label="1) Random Text Image", type="pil")
final_image_output = gr.Image(label="2) Final Text Image", type="pil")
# ๋ฒ„ํŠผ ์•ก์…˜
run_btn.click(
fn=run_process,
inputs=[
prompt_input,
final_text1,
final_text2,
final_text3,
height,
width,
steps,
scale,
seed
],
outputs=[random_image_output, final_image_output]
)
demo.launch(max_threads=20)