Spaces:
Sleeping
Sleeping
File size: 8,993 Bytes
64ff291 a91c31a f79937a a91c31a 64ff291 a91c31a cc2ba07 64ff291 a91c31a 64ff291 f79937a 2b6b085 f79937a 2b6b085 64ff291 f79937a 64ff291 50602cd f79937a 64ff291 f79937a 64ff291 f79937a 2b6b085 b3b1eee f79937a 64ff291 f79937a 2b6b085 b3b1eee 64ff291 f79937a 64ff291 93cd88f b3b1eee 93cd88f 0a94375 93cd88f 64ff291 a91c31a 64ff291 a91c31a 64ff291 a91c31a 64ff291 50602cd a91c31a 50602cd a91c31a f79937a 64ff291 a91c31a f79937a a91c31a f79937a a91c31a f79937a a91c31a 93cd88f f79937a a91c31a 64ff291 f79937a a91c31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Edit distances between Unicode International Phonetic Alphabet strings.
This is a Hugging Face wrapper around the panphon library's distance module.
"""
import evaluate
import datasets
import numpy as np
import panphon.distance
_CITATION = """\
@inproceedings{Mortensen-et-al:2016,
author = {David R. Mortensen and
Patrick Littell and
Akash Bharadwaj and
Kartik Goyal and
Chris Dyer and
Lori S. Levin},
title = {PanPhon: {A} Resource for Mapping {IPA} Segments to Articulatory Feature Vectors},
booktitle = {Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
pages = {3475--3484},
publisher = {{ACL}},
year = {2016}
}
"""
_DESCRIPTION = """
Error rates in terms of distance between articulatory phonological features can help understand differences
between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
This is useful when evaluating speech recognition or orthographic to IPA conversion tasks.
"""
_KWARGS_DESCRIPTION = """
Calculates the following measures of difference that rely on phonetic features:
- Phone error rate (PER) gives edit distance in terms of phones, rather than Unicode characters, since phones can consist of\
multiple characters. It is normalized by the number of phones of the reference string.
- Phone feature error rate (PFER) is Levenshtein distance between strings where distance between individual phones\
is computed using Hamming distance between phonetic features. By default it is a metric that obeys the triangle\
equality, but can also be normalized by number of phones.
- Feature error rate (FER) is the edit distance in terms of articulatory features normalized by the number of phones in the reference.
Each measure is given for each prediction, reference pair along with the mean value across all pairs.
Args:
predictions: list of predictions to score. Each predictions should be a string of unicode characters.
references: list of reference for each prediction. Each reference should be a string with of unicode characters.
feature_model: string to set which panphon.distance.Distance feature parsing model is used, choose from "strict", "permissive", "segment". Defaults to "segment".
is_normalize_pfer: bool, set to True to normalize PFER by the largest number of phones in the prediction, reference pair
Returns:
phone_error_rates: list of floats giving PER for each prediction, reference pair
mean_phone_error_rate: float, average PER across all examples
phone_feature_error_rates: list of floats giving PFER for each prediction, reference pair
mean_phone_feature_error_rates: float, average PFER across all examples
feature_error_rates: list of floats giving FER for each prediction, reference pair
mean_feature_error_rates: float, average FER across all examples
Examples:
Compare articulatory differences in voicing in "bob" vs. "pop" and different pronunciations of "the":
>>> phone_distance = evaluate.load("ginic/phone_errors")
>>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"])
{'phone_error_rates': [0.6666666666666666, 0.5], 'mean_phone_error_rate': 0.5833333333333333, 'phone_feature_error_rates': [0.08333333333333333, 0.125], 'mean_phone_feature_error_rates': 0.10416666666666666, 'feature_error_rates': [0.027777777777777776, 0.0625], 'mean_feature_error_rates': 0.04513888888888889}
Normalize PFER by the length of string with largest number of phones:
>>> phone_distance = evaluate.load("ginic/phone_errors")
>>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"], is_normalize_pfer=True)
"""
def phone_error_rate(prediction:str, reference: str, distance_computer:panphon.distance.Distance):
"""Computes phone error rates. This is similar to the Distance.phoneme_error_rate function, but
is more efficient and fixes some bugs related to normalization in the original function.
Args:
distance_computer (panphon.distance.Distance): computes edit distance and resolves characters to phones
Returns:
float: the phone error rate
>>> phone_error_rate("bob", "po", panphon.distance.Distance())
1.0
>>> phone_error_rate("ði", "ðə", panphon.distance.Distance())
0.5
"""
if reference: # Can only be computed when the length of the reference greater than 0
pred_phones = distance_computer.fm.ipa_segs(prediction)
ref_phones = distance_computer.fm.ipa_segs(reference)
phone_edits = distance_computer.min_edit_distance(
lambda x: 1, # deletion cost
lambda x: 1, # insertion cost
lambda x, y: 0 if x == y else 1, # substitution cost,
[[]],
pred_phones,
ref_phones
)
return phone_edits / len(ref_phones)
else:
raise ValueError("one or more references are empty strings")
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class PhoneDistance(evaluate.Metric):
"""Class for computing distance between Unicode IPA strings """
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string', id="sequence"),
'references': datasets.Value('string', id="sequence"),
}),
# Additional links to the codebase or references
codebase_urls=["https://github.com/dmort27/panphon", "https://huggingface.co/spaces/ginic/phone_distance/tree/main"],
reference_urls=["https://pypi.org/project/panphon/", "https://arxiv.org/abs/2308.03917"]
)
def _compute(self, predictions:list[str], references:list[str], feature_model:str="segment", is_normalize_pfer:bool=False):
"""Computes phoneme error rates, phone feature error rate (Hamming feature edit distance) and feature error rates between prediction and reference strings
Args:
predictions (list[str]): Predicted transcriptions.
references (list[str]): Reference transcriptions.
feature_model (str, optional): panphon.distance.Distance feature parsing model to be used, choose from "strict", "permissive", "segment". Defaults to "segment".
is_normalize_pfer (bool, optional): Set to true to normalize phone feature error rates by maximum length (measure won't be a true metric). Defaults to False.
Returns:
dict: {"phone_error_rates": list[float], "mean_phone_error_rate": float, "phone_feature_error_rates": list[float], "mean_phone_feature_error_rates": float,
"feature_error_rates": list[float], "mean_feature_error_rates": float}
"""
distance_computer = panphon.distance.Distance(feature_model=feature_model)
phone_error_rates = []
feature_error_rates = []
hamming_distances = []
for p, r in zip(predictions, references):
if is_normalize_pfer:
hd = distance_computer.hamming_feature_edit_distance_div_maxlen(p, r)
else:
hd = distance_computer.hamming_feature_edit_distance(p, r)
hamming_distances.append(hd)
per = phone_error_rate(p, r, distance_computer)
phone_error_rates.append(per)
fer = distance_computer.feature_error_rate(p, r)
feature_error_rates.append(fer)
return {
"phone_error_rates": phone_error_rates,
"mean_phone_error_rate": np.mean(phone_error_rates),
"phone_feature_error_rates": hamming_distances,
"mean_phone_feature_error_rates": np.mean(hamming_distances),
"feature_error_rates": feature_error_rates,
"mean_feature_error_rates": np.mean(feature_error_rates)
}
|