ginic commited on
Commit
2b6b085
·
1 Parent(s): 50602cd

Renaming repo to `phone_errors`

Browse files
Files changed (3) hide show
  1. README.md +4 -4
  2. app.py +1 -1
  3. phone_distance.py +4 -4
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: phone_distance
3
  tags:
4
  - evaluate
5
  - metric
6
  description: >-
7
- Measures of distance in terms of articulatory phonological features can help understand differences
8
  between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
9
  This is useful when evaluating speech recognition or orthographic to IPA conversion tasks.
10
  sdk: gradio
@@ -16,14 +16,14 @@ pinned: false
16
  # Metric Card for Phone Distance
17
 
18
  ## Metric Description
19
- Measures of distance in terms of articulatory phonological features can help understand differences between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
20
  This is useful when evaluating speech recognition or orthographic to IPA conversion tasks. These are Levenshtein distances for comparing strings where the smallest unit of measurement is based on phones or articulatory phonological features, rather than Unicode characters.
21
 
22
  ## How to Use
23
 
24
  ```python
25
  import evaluate
26
- phone_distance = evaluate.load("ginic/phone_distance")
27
  phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"])
28
  ```
29
 
 
1
  ---
2
+ title: phone_errors
3
  tags:
4
  - evaluate
5
  - metric
6
  description: >-
7
+ Error rates in terms of distance between articulatory phonological features can help understand differences
8
  between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
9
  This is useful when evaluating speech recognition or orthographic to IPA conversion tasks.
10
  sdk: gradio
 
16
  # Metric Card for Phone Distance
17
 
18
  ## Metric Description
19
+ Error rates in terms of distance between articulatory phonological features can help understand differences between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
20
  This is useful when evaluating speech recognition or orthographic to IPA conversion tasks. These are Levenshtein distances for comparing strings where the smallest unit of measurement is based on phones or articulatory phonological features, rather than Unicode characters.
21
 
22
  ## How to Use
23
 
24
  ```python
25
  import evaluate
26
+ phone_distance = evaluate.load("ginic/phone_errors")
27
  phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"])
28
  ```
29
 
app.py CHANGED
@@ -2,5 +2,5 @@ import evaluate
2
  from evaluate.utils import launch_gradio_widget
3
 
4
 
5
- module = evaluate.load("ginic/phone_distance")
6
  launch_gradio_widget(module)
 
2
  from evaluate.utils import launch_gradio_widget
3
 
4
 
5
+ module = evaluate.load("ginic/phone_errors")
6
  launch_gradio_widget(module)
phone_distance.py CHANGED
@@ -38,9 +38,9 @@ _CITATION = """\
38
  """
39
 
40
  _DESCRIPTION = """
41
- Measures of distance in terms of articulatory phonological features can help understand differences
42
  between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
43
- This is useful when evaluating speech recognition or orthographic to IPA conversion tasks.
44
  """
45
 
46
 
@@ -71,12 +71,12 @@ Returns:
71
 
72
  Examples:
73
  Compare articulatory differences in voicing in "bob" vs. "pop" and different pronunciations of "the":
74
- >>> phone_distance = evaluate.load("ginic/phone_distance")
75
  >>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"])
76
  {'phone_error_rates': [0.6666666666666666, 0.5], 'mean_phone_error_rate': 0.5833333333333333, 'phone_feature_error_rates': [0.08333333333333333, 0.125], 'mean_phone_feature_error_rates': 0.10416666666666666, 'feature_error_rates': [0.027777777777777776, 0.0625], 'mean_feature_error_rates': 0.04513888888888889}
77
 
78
  Normalize PFER by the length of string with largest number of phones:
79
- >>> phone_distance = evaluate.load("ginic/phone_distance")
80
  >>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"], is_normalize_pfer=True)
81
 
82
  """
 
38
  """
39
 
40
  _DESCRIPTION = """
41
+ Error rates in terms of distance between articulatory phonological features can help understand differences
42
  between strings in the International Phonetic Alphabet (IPA) in a linguistically motivated way.
43
+ This is useful when evaluating speech recognition or orthographic to IPA conversion tasks.
44
  """
45
 
46
 
 
71
 
72
  Examples:
73
  Compare articulatory differences in voicing in "bob" vs. "pop" and different pronunciations of "the":
74
+ >>> phone_distance = evaluate.load("ginic/phone_errors")
75
  >>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"])
76
  {'phone_error_rates': [0.6666666666666666, 0.5], 'mean_phone_error_rate': 0.5833333333333333, 'phone_feature_error_rates': [0.08333333333333333, 0.125], 'mean_phone_feature_error_rates': 0.10416666666666666, 'feature_error_rates': [0.027777777777777776, 0.0625], 'mean_feature_error_rates': 0.04513888888888889}
77
 
78
  Normalize PFER by the length of string with largest number of phones:
79
+ >>> phone_distance = evaluate.load("ginic/phone_errors")
80
  >>> phone_distance.compute(predictions=["bob", "ði"], references=["pop", "ðə"], is_normalize_pfer=True)
81
 
82
  """