|
import inspect |
|
import json |
|
import os |
|
from dataclasses import asdict, is_dataclass |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Type, TypeVar, Union, get_args |
|
|
|
from .constants import CONFIG_NAME, PYTORCH_WEIGHTS_NAME, SAFETENSORS_SINGLE_FILE |
|
from .file_download import hf_hub_download |
|
from .hf_api import HfApi |
|
from .utils import ( |
|
EntryNotFoundError, |
|
HfHubHTTPError, |
|
SoftTemporaryDirectory, |
|
is_safetensors_available, |
|
is_torch_available, |
|
logging, |
|
validate_hf_hub_args, |
|
) |
|
from .utils._deprecation import _deprecate_arguments |
|
|
|
|
|
if TYPE_CHECKING: |
|
from _typeshed import DataclassInstance |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_safetensors_available(): |
|
from safetensors.torch import load_model as load_model_as_safetensor |
|
from safetensors.torch import save_model as save_model_as_safetensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
T = TypeVar("T", bound="ModelHubMixin") |
|
|
|
|
|
class ModelHubMixin: |
|
""" |
|
A generic mixin to integrate ANY machine learning framework with the Hub. |
|
|
|
To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models |
|
have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example |
|
of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from dataclasses import dataclass |
|
>>> from huggingface_hub import ModelHubMixin |
|
|
|
# Define your model configuration (optional) |
|
>>> @dataclass |
|
... class Config: |
|
... foo: int = 512 |
|
... bar: str = "cpu" |
|
|
|
# Inherit from ModelHubMixin (and optionally from your framework's model class) |
|
>>> class MyCustomModel(ModelHubMixin): |
|
... def __init__(self, config: Config): |
|
... # define how to initialize your model |
|
... super().__init__() |
|
... ... |
|
... |
|
... def _save_pretrained(self, save_directory: Path) -> None: |
|
... # define how to serialize your model |
|
... ... |
|
... |
|
... @classmethod |
|
... def from_pretrained( |
|
... cls: Type[T], |
|
... pretrained_model_name_or_path: Union[str, Path], |
|
... *, |
|
... force_download: bool = False, |
|
... resume_download: bool = False, |
|
... proxies: Optional[Dict] = None, |
|
... token: Optional[Union[str, bool]] = None, |
|
... cache_dir: Optional[Union[str, Path]] = None, |
|
... local_files_only: bool = False, |
|
... revision: Optional[str] = None, |
|
... **model_kwargs, |
|
... ) -> T: |
|
... # define how to deserialize your model |
|
... ... |
|
|
|
>>> model = MyCustomModel(config=Config(foo=256, bar="gpu")) |
|
|
|
# Save model weights to local directory |
|
>>> model.save_pretrained("my-awesome-model") |
|
|
|
# Push model weights to the Hub |
|
>>> model.push_to_hub("my-awesome-model") |
|
|
|
# Download and initialize weights from the Hub |
|
>>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model") |
|
>>> reloaded_model.config |
|
Config(foo=256, bar="gpu") |
|
``` |
|
""" |
|
|
|
config: Optional[Union[dict, "DataclassInstance"]] = None |
|
|
|
|
|
def __new__(cls, *args, **kwargs) -> "ModelHubMixin": |
|
instance = super().__new__(cls) |
|
|
|
|
|
if instance.config is None: |
|
if "config" in kwargs: |
|
instance.config = kwargs["config"] |
|
elif len(args) > 0: |
|
sig = inspect.signature(cls.__init__) |
|
parameters = list(sig.parameters)[1:] |
|
for key, value in zip(parameters, args): |
|
if key == "config": |
|
instance.config = value |
|
break |
|
return instance |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, Path], |
|
*, |
|
config: Optional[Union[dict, "DataclassInstance"]] = None, |
|
repo_id: Optional[str] = None, |
|
push_to_hub: bool = False, |
|
**push_to_hub_kwargs, |
|
) -> Optional[str]: |
|
""" |
|
Save weights in local directory. |
|
|
|
Args: |
|
save_directory (`str` or `Path`): |
|
Path to directory in which the model weights and configuration will be saved. |
|
config (`dict` or `DataclassInstance`, *optional*): |
|
Model configuration specified as a key/value dictionary or a dataclass instance. |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Huggingface Hub after saving it. |
|
repo_id (`str`, *optional*): |
|
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if |
|
not provided. |
|
kwargs: |
|
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method. |
|
""" |
|
save_directory = Path(save_directory) |
|
save_directory.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
self._save_pretrained(save_directory) |
|
|
|
|
|
if config is None: |
|
config = self.config |
|
if config is not None: |
|
if is_dataclass(config): |
|
config = asdict(config) |
|
(save_directory / CONFIG_NAME).write_text(json.dumps(config, indent=2)) |
|
|
|
|
|
if push_to_hub: |
|
kwargs = push_to_hub_kwargs.copy() |
|
if config is not None: |
|
kwargs["config"] = config |
|
if repo_id is None: |
|
repo_id = save_directory.name |
|
return self.push_to_hub(repo_id=repo_id, **kwargs) |
|
return None |
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
""" |
|
Overwrite this method in subclass to define how to save your model. |
|
Check out our [integration guide](../guides/integrations) for instructions. |
|
|
|
Args: |
|
save_directory (`str` or `Path`): |
|
Path to directory in which the model weights and configuration will be saved. |
|
""" |
|
raise NotImplementedError |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_pretrained( |
|
cls: Type[T], |
|
pretrained_model_name_or_path: Union[str, Path], |
|
*, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict] = None, |
|
token: Optional[Union[str, bool]] = None, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
local_files_only: bool = False, |
|
revision: Optional[str] = None, |
|
**model_kwargs, |
|
) -> T: |
|
""" |
|
Download a model from the Huggingface Hub and instantiate it. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str`, `Path`): |
|
- Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`. |
|
- Or a path to a `directory` containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`. |
|
revision (`str`, *optional*): |
|
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. |
|
Defaults to the latest commit on `main` branch. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding |
|
the existing cache. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request. |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. By default, it will use the token |
|
cached when running `huggingface-cli login`. |
|
cache_dir (`str`, `Path`, *optional*): |
|
Path to the folder where cached files are stored. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, avoid downloading the file and return the path to the local cached file if it exists. |
|
model_kwargs (`Dict`, *optional*): |
|
Additional kwargs to pass to the model during initialization. |
|
""" |
|
model_id = str(pretrained_model_name_or_path) |
|
config_file: Optional[str] = None |
|
if os.path.isdir(model_id): |
|
if CONFIG_NAME in os.listdir(model_id): |
|
config_file = os.path.join(model_id, CONFIG_NAME) |
|
else: |
|
logger.warning(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}") |
|
else: |
|
try: |
|
config_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename=CONFIG_NAME, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
except HfHubHTTPError as e: |
|
logger.info(f"{CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}") |
|
|
|
config = None |
|
if config_file is not None: |
|
|
|
with open(config_file, "r", encoding="utf-8") as f: |
|
config = json.load(f) |
|
|
|
|
|
init_parameters = inspect.signature(cls.__init__).parameters |
|
if "config" in init_parameters: |
|
|
|
config_annotation = init_parameters["config"].annotation |
|
if config_annotation is inspect.Parameter.empty: |
|
pass |
|
elif is_dataclass(config_annotation): |
|
config = config_annotation(**config) |
|
else: |
|
|
|
for _sub_annotation in get_args(config_annotation): |
|
if is_dataclass(_sub_annotation): |
|
config = _sub_annotation(**config) |
|
break |
|
|
|
|
|
model_kwargs["config"] = config |
|
elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in init_parameters.values()): |
|
|
|
model_kwargs["config"] = config |
|
|
|
instance = cls._from_pretrained( |
|
model_id=str(model_id), |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
|
|
if config is not None and instance.config is None: |
|
instance.config = config |
|
|
|
return instance |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls: Type[T], |
|
*, |
|
model_id: str, |
|
revision: Optional[str], |
|
cache_dir: Optional[Union[str, Path]], |
|
force_download: bool, |
|
proxies: Optional[Dict], |
|
resume_download: bool, |
|
local_files_only: bool, |
|
token: Optional[Union[str, bool]], |
|
**model_kwargs, |
|
) -> T: |
|
"""Overwrite this method in subclass to define how to load your model from pretrained. |
|
|
|
Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most |
|
args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this |
|
method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location` |
|
parameter to set on which device the model should be loaded. |
|
|
|
Check out our [integration guide](../guides/integrations) for more instructions. |
|
|
|
Args: |
|
model_id (`str`): |
|
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). |
|
revision (`str`, *optional*): |
|
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the |
|
latest commit on `main` branch. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding |
|
the existing cache. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`). |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. By default, it will use the token |
|
cached when running `huggingface-cli login`. |
|
cache_dir (`str`, `Path`, *optional*): |
|
Path to the folder where cached files are stored. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, avoid downloading the file and return the path to the local cached file if it exists. |
|
model_kwargs: |
|
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. |
|
""" |
|
raise NotImplementedError |
|
|
|
@_deprecate_arguments( |
|
version="0.23.0", |
|
deprecated_args=["api_endpoint"], |
|
custom_message="Use `HF_ENDPOINT` environment variable instead.", |
|
) |
|
@validate_hf_hub_args |
|
def push_to_hub( |
|
self, |
|
repo_id: str, |
|
*, |
|
config: Optional[Union[dict, "DataclassInstance"]] = None, |
|
commit_message: str = "Push model using huggingface_hub.", |
|
private: bool = False, |
|
token: Optional[str] = None, |
|
branch: Optional[str] = None, |
|
create_pr: Optional[bool] = None, |
|
allow_patterns: Optional[Union[List[str], str]] = None, |
|
ignore_patterns: Optional[Union[List[str], str]] = None, |
|
delete_patterns: Optional[Union[List[str], str]] = None, |
|
|
|
api_endpoint: Optional[str] = None, |
|
) -> str: |
|
""" |
|
Upload model checkpoint to the Hub. |
|
|
|
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use |
|
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more |
|
details. |
|
|
|
Args: |
|
repo_id (`str`): |
|
ID of the repository to push to (example: `"username/my-model"`). |
|
config (`dict` or `DataclassInstance`, *optional*): |
|
Model configuration specified as a key/value dictionary or a dataclass instance. |
|
commit_message (`str`, *optional*): |
|
Message to commit while pushing. |
|
private (`bool`, *optional*, defaults to `False`): |
|
Whether the repository created should be private. |
|
api_endpoint (`str`, *optional*): |
|
The API endpoint to use when pushing the model to the hub. |
|
token (`str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. By default, it will use the token |
|
cached when running `huggingface-cli login`. |
|
branch (`str`, *optional*): |
|
The git branch on which to push the model. This defaults to `"main"`. |
|
create_pr (`boolean`, *optional*): |
|
Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. |
|
allow_patterns (`List[str]` or `str`, *optional*): |
|
If provided, only files matching at least one pattern are pushed. |
|
ignore_patterns (`List[str]` or `str`, *optional*): |
|
If provided, files matching any of the patterns are not pushed. |
|
delete_patterns (`List[str]` or `str`, *optional*): |
|
If provided, remote files matching any of the patterns will be deleted from the repo. |
|
|
|
Returns: |
|
The url of the commit of your model in the given repository. |
|
""" |
|
api = HfApi(endpoint=api_endpoint, token=token) |
|
repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id |
|
|
|
|
|
with SoftTemporaryDirectory() as tmp: |
|
saved_path = Path(tmp) / repo_id |
|
self.save_pretrained(saved_path, config=config) |
|
return api.upload_folder( |
|
repo_id=repo_id, |
|
repo_type="model", |
|
folder_path=saved_path, |
|
commit_message=commit_message, |
|
revision=branch, |
|
create_pr=create_pr, |
|
allow_patterns=allow_patterns, |
|
ignore_patterns=ignore_patterns, |
|
delete_patterns=delete_patterns, |
|
) |
|
|
|
|
|
class PyTorchModelHubMixin(ModelHubMixin): |
|
""" |
|
Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model |
|
is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model, |
|
you should first set it back in training mode with `model.train()`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from dataclasses import dataclass |
|
>>> import torch |
|
>>> import torch.nn as nn |
|
>>> from huggingface_hub import PyTorchModelHubMixin |
|
|
|
>>> @dataclass |
|
... class Config: |
|
... hidden_size: int = 512 |
|
... vocab_size: int = 30000 |
|
... output_size: int = 4 |
|
|
|
>>> class MyModel(nn.Module, PyTorchModelHubMixin): |
|
... def __init__(self, config: Config): |
|
... super().__init__() |
|
... self.param = nn.Parameter(torch.rand(config.hidden_size, config.vocab_size)) |
|
... self.linear = nn.Linear(config.output_size, config.vocab_size) |
|
|
|
... def forward(self, x): |
|
... return self.linear(x + self.param) |
|
>>> model = MyModel() |
|
|
|
# Save model weights to local directory |
|
>>> model.save_pretrained("my-awesome-model") |
|
|
|
# Push model weights to the Hub |
|
>>> model.push_to_hub("my-awesome-model") |
|
|
|
# Download and initialize weights from the Hub |
|
>>> model = MyModel.from_pretrained("username/my-awesome-model") |
|
``` |
|
""" |
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
"""Save weights from a Pytorch model to a local directory.""" |
|
model_to_save = self.module if hasattr(self, "module") else self |
|
save_model_as_safetensor(model_to_save, str(save_directory / SAFETENSORS_SINGLE_FILE)) |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls, |
|
*, |
|
model_id: str, |
|
revision: Optional[str], |
|
cache_dir: Optional[Union[str, Path]], |
|
force_download: bool, |
|
proxies: Optional[Dict], |
|
resume_download: bool, |
|
local_files_only: bool, |
|
token: Union[str, bool, None], |
|
map_location: str = "cpu", |
|
strict: bool = False, |
|
**model_kwargs, |
|
): |
|
"""Load Pytorch pretrained weights and return the loaded model.""" |
|
model = cls(**model_kwargs) |
|
if os.path.isdir(model_id): |
|
print("Loading weights from local directory") |
|
model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE) |
|
return cls._load_as_safetensor(model, model_file, map_location, strict) |
|
else: |
|
try: |
|
model_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename=SAFETENSORS_SINGLE_FILE, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
return cls._load_as_safetensor(model, model_file, map_location, strict) |
|
except EntryNotFoundError: |
|
model_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename=PYTORCH_WEIGHTS_NAME, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
return cls._load_as_pickle(model, model_file, map_location, strict) |
|
|
|
@classmethod |
|
def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: |
|
state_dict = torch.load(model_file, map_location=torch.device(map_location)) |
|
model.load_state_dict(state_dict, strict=strict) |
|
model.eval() |
|
return model |
|
|
|
@classmethod |
|
def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: |
|
load_model_as_safetensor(model, model_file, strict=strict) |
|
if map_location != "cpu": |
|
|
|
logger.warning( |
|
"Loading model weights on other devices than 'cpu' is not supported natively." |
|
" This means that the model is loaded on 'cpu' first and then copied to the device." |
|
" This leads to a slower loading time." |
|
" Support for loading directly on other devices is planned to be added in future releases." |
|
" See https://github.com/huggingface/huggingface_hub/pull/2086 for more details." |
|
) |
|
model.to(map_location) |
|
return model |
|
|