File size: 23,521 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import inspect
import json
import os
from dataclasses import asdict, is_dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Type, TypeVar, Union, get_args
from .constants import CONFIG_NAME, PYTORCH_WEIGHTS_NAME, SAFETENSORS_SINGLE_FILE
from .file_download import hf_hub_download
from .hf_api import HfApi
from .utils import (
EntryNotFoundError,
HfHubHTTPError,
SoftTemporaryDirectory,
is_safetensors_available,
is_torch_available,
logging,
validate_hf_hub_args,
)
from .utils._deprecation import _deprecate_arguments
if TYPE_CHECKING:
from _typeshed import DataclassInstance
if is_torch_available():
import torch # type: ignore
if is_safetensors_available():
from safetensors.torch import load_model as load_model_as_safetensor
from safetensors.torch import save_model as save_model_as_safetensor
logger = logging.get_logger(__name__)
# Generic variable that is either ModelHubMixin or a subclass thereof
T = TypeVar("T", bound="ModelHubMixin")
class ModelHubMixin:
"""
A generic mixin to integrate ANY machine learning framework with the Hub.
To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models
have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example
of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions.
Example:
```python
>>> from dataclasses import dataclass
>>> from huggingface_hub import ModelHubMixin
# Define your model configuration (optional)
>>> @dataclass
... class Config:
... foo: int = 512
... bar: str = "cpu"
# Inherit from ModelHubMixin (and optionally from your framework's model class)
>>> class MyCustomModel(ModelHubMixin):
... def __init__(self, config: Config):
... # define how to initialize your model
... super().__init__()
... ...
...
... def _save_pretrained(self, save_directory: Path) -> None:
... # define how to serialize your model
... ...
...
... @classmethod
... def from_pretrained(
... cls: Type[T],
... pretrained_model_name_or_path: Union[str, Path],
... *,
... force_download: bool = False,
... resume_download: bool = False,
... proxies: Optional[Dict] = None,
... token: Optional[Union[str, bool]] = None,
... cache_dir: Optional[Union[str, Path]] = None,
... local_files_only: bool = False,
... revision: Optional[str] = None,
... **model_kwargs,
... ) -> T:
... # define how to deserialize your model
... ...
>>> model = MyCustomModel(config=Config(foo=256, bar="gpu"))
# Save model weights to local directory
>>> model.save_pretrained("my-awesome-model")
# Push model weights to the Hub
>>> model.push_to_hub("my-awesome-model")
# Download and initialize weights from the Hub
>>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model")
>>> reloaded_model.config
Config(foo=256, bar="gpu")
```
"""
config: Optional[Union[dict, "DataclassInstance"]] = None
# ^ optional config attribute automatically set in `from_pretrained` (if not already set by the subclass)
def __new__(cls, *args, **kwargs) -> "ModelHubMixin":
instance = super().__new__(cls)
# Set `config` attribute if not already set by the subclass
if instance.config is None:
if "config" in kwargs:
instance.config = kwargs["config"]
elif len(args) > 0:
sig = inspect.signature(cls.__init__)
parameters = list(sig.parameters)[1:] # remove `self`
for key, value in zip(parameters, args):
if key == "config":
instance.config = value
break
return instance
def save_pretrained(
self,
save_directory: Union[str, Path],
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
repo_id: Optional[str] = None,
push_to_hub: bool = False,
**push_to_hub_kwargs,
) -> Optional[str]:
"""
Save weights in local directory.
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Huggingface Hub after saving it.
repo_id (`str`, *optional*):
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
not provided.
kwargs:
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
"""
save_directory = Path(save_directory)
save_directory.mkdir(parents=True, exist_ok=True)
# save model weights/files (framework-specific)
self._save_pretrained(save_directory)
# save config (if provided)
if config is None:
config = self.config
if config is not None:
if is_dataclass(config):
config = asdict(config) # type: ignore[arg-type]
(save_directory / CONFIG_NAME).write_text(json.dumps(config, indent=2))
# push to the Hub if required
if push_to_hub:
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
if config is not None: # kwarg for `push_to_hub`
kwargs["config"] = config
if repo_id is None:
repo_id = save_directory.name # Defaults to `save_directory` name
return self.push_to_hub(repo_id=repo_id, **kwargs)
return None
def _save_pretrained(self, save_directory: Path) -> None:
"""
Overwrite this method in subclass to define how to save your model.
Check out our [integration guide](../guides/integrations) for instructions.
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
"""
raise NotImplementedError
@classmethod
@validate_hf_hub_args
def from_pretrained(
cls: Type[T],
pretrained_model_name_or_path: Union[str, Path],
*,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict] = None,
token: Optional[Union[str, bool]] = None,
cache_dir: Optional[Union[str, Path]] = None,
local_files_only: bool = False,
revision: Optional[str] = None,
**model_kwargs,
) -> T:
"""
Download a model from the Huggingface Hub and instantiate it.
Args:
pretrained_model_name_or_path (`str`, `Path`):
- Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`.
- Or a path to a `directory` containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`.
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id.
Defaults to the latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
resume_download (`bool`, *optional*, defaults to `False`):
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs (`Dict`, *optional*):
Additional kwargs to pass to the model during initialization.
"""
model_id = str(pretrained_model_name_or_path)
config_file: Optional[str] = None
if os.path.isdir(model_id):
if CONFIG_NAME in os.listdir(model_id):
config_file = os.path.join(model_id, CONFIG_NAME)
else:
logger.warning(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}")
else:
try:
config_file = hf_hub_download(
repo_id=model_id,
filename=CONFIG_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
except HfHubHTTPError as e:
logger.info(f"{CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}")
config = None
if config_file is not None:
# Read config
with open(config_file, "r", encoding="utf-8") as f:
config = json.load(f)
# Check if class expect a `config` argument
init_parameters = inspect.signature(cls.__init__).parameters
if "config" in init_parameters:
# Check if `config` argument is a dataclass
config_annotation = init_parameters["config"].annotation
if config_annotation is inspect.Parameter.empty:
pass # no annotation
elif is_dataclass(config_annotation):
config = config_annotation(**config) # expect a dataclass
else:
# if Optional/Union annotation => check if a dataclass is in the Union
for _sub_annotation in get_args(config_annotation):
if is_dataclass(_sub_annotation):
config = _sub_annotation(**config)
break
# Forward config to model initialization
model_kwargs["config"] = config
elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in init_parameters.values()):
# If __init__ accepts **kwargs, let's forward the config as well (as a dict)
model_kwargs["config"] = config
instance = cls._from_pretrained(
model_id=str(model_id),
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
**model_kwargs,
)
# Implicitly set the config as instance attribute if not already set by the class
# This way `config` will be available when calling `save_pretrained` or `push_to_hub`.
if config is not None and instance.config is None:
instance.config = config
return instance
@classmethod
def _from_pretrained(
cls: Type[T],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
) -> T:
"""Overwrite this method in subclass to define how to load your model from pretrained.
Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most
args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this
method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location`
parameter to set on which device the model should be loaded.
Check out our [integration guide](../guides/integrations) for more instructions.
Args:
model_id (`str`):
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
resume_download (`bool`, *optional*, defaults to `False`):
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs:
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
"""
raise NotImplementedError
@_deprecate_arguments(
version="0.23.0",
deprecated_args=["api_endpoint"],
custom_message="Use `HF_ENDPOINT` environment variable instead.",
)
@validate_hf_hub_args
def push_to_hub(
self,
repo_id: str,
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
commit_message: str = "Push model using huggingface_hub.",
private: bool = False,
token: Optional[str] = None,
branch: Optional[str] = None,
create_pr: Optional[bool] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
# TODO: remove once deprecated
api_endpoint: Optional[str] = None,
) -> str:
"""
Upload model checkpoint to the Hub.
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
details.
Args:
repo_id (`str`):
ID of the repository to push to (example: `"username/my-model"`).
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
commit_message (`str`, *optional*):
Message to commit while pushing.
private (`bool`, *optional*, defaults to `False`):
Whether the repository created should be private.
api_endpoint (`str`, *optional*):
The API endpoint to use when pushing the model to the hub.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
branch (`str`, *optional*):
The git branch on which to push the model. This defaults to `"main"`.
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are pushed.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not pushed.
delete_patterns (`List[str]` or `str`, *optional*):
If provided, remote files matching any of the patterns will be deleted from the repo.
Returns:
The url of the commit of your model in the given repository.
"""
api = HfApi(endpoint=api_endpoint, token=token)
repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id
# Push the files to the repo in a single commit
with SoftTemporaryDirectory() as tmp:
saved_path = Path(tmp) / repo_id
self.save_pretrained(saved_path, config=config)
return api.upload_folder(
repo_id=repo_id,
repo_type="model",
folder_path=saved_path,
commit_message=commit_message,
revision=branch,
create_pr=create_pr,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
delete_patterns=delete_patterns,
)
class PyTorchModelHubMixin(ModelHubMixin):
"""
Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model
is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model,
you should first set it back in training mode with `model.train()`.
Example:
```python
>>> from dataclasses import dataclass
>>> import torch
>>> import torch.nn as nn
>>> from huggingface_hub import PyTorchModelHubMixin
>>> @dataclass
... class Config:
... hidden_size: int = 512
... vocab_size: int = 30000
... output_size: int = 4
>>> class MyModel(nn.Module, PyTorchModelHubMixin):
... def __init__(self, config: Config):
... super().__init__()
... self.param = nn.Parameter(torch.rand(config.hidden_size, config.vocab_size))
... self.linear = nn.Linear(config.output_size, config.vocab_size)
... def forward(self, x):
... return self.linear(x + self.param)
>>> model = MyModel()
# Save model weights to local directory
>>> model.save_pretrained("my-awesome-model")
# Push model weights to the Hub
>>> model.push_to_hub("my-awesome-model")
# Download and initialize weights from the Hub
>>> model = MyModel.from_pretrained("username/my-awesome-model")
```
"""
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights from a Pytorch model to a local directory."""
model_to_save = self.module if hasattr(self, "module") else self # type: ignore
save_model_as_safetensor(model_to_save, str(save_directory / SAFETENSORS_SINGLE_FILE))
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu",
strict: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
model = cls(**model_kwargs)
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE)
return cls._load_as_safetensor(model, model_file, map_location, strict)
else:
try:
model_file = hf_hub_download(
repo_id=model_id,
filename=SAFETENSORS_SINGLE_FILE,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
return cls._load_as_safetensor(model, model_file, map_location, strict)
except EntryNotFoundError:
model_file = hf_hub_download(
repo_id=model_id,
filename=PYTORCH_WEIGHTS_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
return cls._load_as_pickle(model, model_file, map_location, strict)
@classmethod
def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
state_dict = torch.load(model_file, map_location=torch.device(map_location))
model.load_state_dict(state_dict, strict=strict) # type: ignore
model.eval() # type: ignore
return model
@classmethod
def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type]
if map_location != "cpu":
# TODO: remove this once https://github.com/huggingface/safetensors/pull/449 is merged.
logger.warning(
"Loading model weights on other devices than 'cpu' is not supported natively."
" This means that the model is loaded on 'cpu' first and then copied to the device."
" This leads to a slower loading time."
" Support for loading directly on other devices is planned to be added in future releases."
" See https://github.com/huggingface/huggingface_hub/pull/2086 for more details."
)
model.to(map_location) # type: ignore [attr-defined]
return model
|