|
import json |
|
import os |
|
import pathlib |
|
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from pytorch_fid.inception import InceptionV3 |
|
from scipy import linalg |
|
from torch.nn.functional import adaptive_avg_pool2d |
|
|
|
from tools.metrics.utils import tracker |
|
|
|
try: |
|
from tqdm import tqdm |
|
except ImportError: |
|
|
|
def tqdm(x): |
|
return x |
|
|
|
|
|
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"} |
|
|
|
|
|
class ImagePathDataset(torch.utils.data.Dataset): |
|
def __init__(self, files, transforms=None): |
|
self.files = files |
|
self.transforms = transforms |
|
|
|
def __len__(self): |
|
return len(self.files) |
|
|
|
def __getitem__(self, i): |
|
path = self.files[i] |
|
try: |
|
img = Image.open(path) |
|
assert img.mode == "RGB" |
|
if self.transforms is not None: |
|
img = self.transforms(img) |
|
except Exception as e: |
|
raise FileNotFoundError(path, "\n", e) |
|
|
|
return img |
|
|
|
|
|
def get_activations(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1): |
|
model.eval() |
|
|
|
if batch_size > len(files): |
|
print("Warning: batch size is bigger than the data size. " "Setting batch size to data size") |
|
batch_size = len(files) |
|
transform = T.Compose( |
|
[ |
|
T.Resize(args.img_size), |
|
T.CenterCrop(args.img_size), |
|
T.ToTensor(), |
|
] |
|
) |
|
dataset = ImagePathDataset(files, transforms=transform) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers |
|
) |
|
|
|
pred_arr = np.empty((len(files), dims)) |
|
|
|
start_idx = 0 |
|
|
|
for batch in tqdm(dataloader, desc=f"FID: {args.exp_name}", position=args.gpu_id, leave=True): |
|
batch = batch.to(device) |
|
|
|
with torch.no_grad(): |
|
pred = model(batch)[0] |
|
|
|
|
|
|
|
if pred.size(2) != 1 or pred.size(3) != 1: |
|
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) |
|
|
|
pred = pred.squeeze(3).squeeze(2).cpu().numpy() |
|
|
|
pred_arr[start_idx : start_idx + pred.shape[0]] = pred |
|
|
|
start_idx = start_idx + pred.shape[0] |
|
|
|
return pred_arr |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths" |
|
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions" |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ("fid calculation produces singular product; " "adding %s to diagonal of cov estimates") % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError(f"Imaginary component {m}") |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean |
|
|
|
|
|
def calculate_activation_statistics(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1): |
|
act = get_activations(files, model, batch_size, dims, device, num_workers) |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
|
|
def compute_statistics_of_path(path, model, batch_size, dims, device, num_workers=1, flag="ref"): |
|
if path.endswith(".npz"): |
|
print("loaded from npz files") |
|
with np.load(path) as f: |
|
m, s = f["mu"][:], f["sigma"][:] |
|
elif path.endswith(".json"): |
|
with open(path) as file: |
|
data_dict = json.load(file) |
|
all_lines = list(data_dict.keys())[:sample_nums] |
|
|
|
files = [] |
|
if isinstance(all_lines, list): |
|
for k in all_lines: |
|
v = data_dict[k] |
|
if "PG-eval-data" in args.img_path: |
|
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg") |
|
else: |
|
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg") |
|
files.append(img_path) |
|
elif isinstance(all_lines, dict): |
|
assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files") |
|
for k, v in all_lines.items(): |
|
if "PG-eval-data" in args.img_path: |
|
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg") |
|
else: |
|
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg") |
|
files.append(img_path) |
|
|
|
files = sorted(files) |
|
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers) |
|
else: |
|
path = pathlib.Path(path) |
|
files = sorted([file for ext in IMAGE_EXTENSIONS for file in path.glob(f"*.{ext}")]) |
|
|
|
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers) |
|
return m, s |
|
|
|
|
|
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1): |
|
"""Calculates the FID of two paths""" |
|
for p in paths: |
|
if not os.path.exists(p): |
|
raise RuntimeError("Invalid path: %s" % p) |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
model = InceptionV3([block_idx]).to(device) |
|
|
|
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref") |
|
m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, dims, device, num_workers, flag="gen") |
|
fid_value = calculate_frechet_distance(m1, s1, m2, s2) |
|
|
|
return fid_value |
|
|
|
|
|
def save_fid_stats(paths, batch_size, device, dims, num_workers=1): |
|
"""Calculates the FID of two paths""" |
|
if not os.path.exists(paths[0]): |
|
raise RuntimeError("Invalid path: %s" % paths[0]) |
|
|
|
if os.path.exists(paths[1]): |
|
raise RuntimeError("Existing output file: %s" % paths[1]) |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
model = InceptionV3([block_idx]).to(device) |
|
|
|
print(f"Saving statistics for {paths[0]}") |
|
|
|
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref") |
|
np.savez_compressed(paths[1], mu=m1, sigma=s1) |
|
|
|
|
|
def main(): |
|
txt_path = args.txt_path if args.txt_path is not None else args.img_path |
|
save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}.txt") |
|
if os.path.exists(save_txt_path): |
|
with open(save_txt_path) as f: |
|
fid_value = f.readlines()[0].strip() |
|
print(f"FID {fid_value}: {args.exp_name}") |
|
return {args.exp_name: float(fid_value)} |
|
|
|
if args.device is None: |
|
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") |
|
else: |
|
device = torch.device(args.device) |
|
|
|
if args.num_workers is None: |
|
try: |
|
num_cpus = len(os.sched_getaffinity(0)) |
|
except AttributeError: |
|
num_cpus = os.cpu_count() |
|
|
|
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 |
|
else: |
|
num_workers = args.num_workers |
|
|
|
if args.save_stats: |
|
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) |
|
return |
|
|
|
fid_value = calculate_fid_given_paths(args.path, args.batch_size, device, args.dims, num_workers) |
|
print(f"FID {fid_value}: {args.exp_name}") |
|
with open(save_txt_path, "w") as file: |
|
file.write(str(fid_value)) |
|
|
|
return {args.exp_name: fid_value} |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) |
|
parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use") |
|
parser.add_argument( |
|
"--num-workers", type=int, help="Number of processes to use for data loading. Defaults to `min(8, num_cpus)`" |
|
) |
|
parser.add_argument("--img_size", type=int, default=512) |
|
parser.add_argument("--device", type=str, default="cuda", help="Device to use. Like cuda, cuda:0 or cpu") |
|
|
|
parser.add_argument("--img_path", type=str, default=None) |
|
parser.add_argument("--exp_name", type=str, default="Sana") |
|
parser.add_argument("--txt_path", type=str, default=None) |
|
parser.add_argument("--sample_nums", type=int, default=30_000) |
|
|
|
parser.add_argument( |
|
"--dims", |
|
type=int, |
|
default=2048, |
|
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), |
|
help="Dimensionality of Inception features to use. By default, uses pool3 features", |
|
) |
|
parser.add_argument( |
|
"--save-stats", |
|
action="store_true", |
|
help="Generate an npz archive from a directory of samples. The first path is used as input and the second as output.", |
|
) |
|
parser.add_argument("--stat", action="store_true") |
|
parser.add_argument( |
|
"--path", type=str, nargs=2, default=["", ""], help="Paths to the generated images or to .npz statistic files" |
|
) |
|
|
|
|
|
parser.add_argument("--log_metric", type=str, default="metric") |
|
parser.add_argument("--gpu_id", type=int, default=0) |
|
parser.add_argument("--log_fid", action="store_true") |
|
parser.add_argument("--suffix_label", type=str, default="", help="used for fid online log") |
|
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log") |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default=None, |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="t2i-evit-baseline", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
parser.add_argument( |
|
"--name", |
|
type=str, |
|
default="baseline", |
|
help=("Wandb Project Name"), |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
sample_nums = args.sample_nums |
|
if args.stat: |
|
if args.device is None: |
|
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") |
|
else: |
|
device = torch.device(args.device) |
|
|
|
if args.num_workers is None: |
|
try: |
|
num_cpus = len(os.sched_getaffinity(0)) |
|
except AttributeError: |
|
num_cpus = os.cpu_count() |
|
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 |
|
else: |
|
num_workers = args.num_workers |
|
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) |
|
else: |
|
print(args.path, args.exp_name) |
|
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name) |
|
fid_result = main() |
|
if args.log_fid: |
|
tracker(args, fid_result, args.suffix_label, pattern=args.tracker_pattern, metric="FID") |
|
|