File size: 11,866 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import json
import os
import pathlib
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser

import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from pytorch_fid.inception import InceptionV3
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d

from tools.metrics.utils import tracker

try:
    from tqdm import tqdm
except ImportError:
    # If tqdm is not available, provide a mock version of it
    def tqdm(x):
        return x


IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"}


class ImagePathDataset(torch.utils.data.Dataset):
    def __init__(self, files, transforms=None):
        self.files = files
        self.transforms = transforms

    def __len__(self):
        return len(self.files)

    def __getitem__(self, i):
        path = self.files[i]
        try:
            img = Image.open(path)
            assert img.mode == "RGB"
            if self.transforms is not None:
                img = self.transforms(img)
        except Exception as e:
            raise FileNotFoundError(path, "\n", e)

        return img


def get_activations(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1):
    model.eval()

    if batch_size > len(files):
        print("Warning: batch size is bigger than the data size. " "Setting batch size to data size")
        batch_size = len(files)
    transform = T.Compose(
        [
            T.Resize(args.img_size),  # Image.BICUBIC
            T.CenterCrop(args.img_size),
            T.ToTensor(),
        ]
    )
    dataset = ImagePathDataset(files, transforms=transform)
    dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers
    )

    pred_arr = np.empty((len(files), dims))

    start_idx = 0

    for batch in tqdm(dataloader, desc=f"FID: {args.exp_name}", position=args.gpu_id, leave=True):
        batch = batch.to(device)

        with torch.no_grad():
            pred = model(batch)[0]

        # If model output is not scalar, apply global spatial average pooling.
        # This happens if you choose a dimensionality not equal 2048.
        if pred.size(2) != 1 or pred.size(3) != 1:
            pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

        pred = pred.squeeze(3).squeeze(2).cpu().numpy()

        pred_arr[start_idx : start_idx + pred.shape[0]] = pred

        start_idx = start_idx + pred.shape[0]

    return pred_arr


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths"
    assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions"

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ("fid calculation produces singular product; " "adding %s to diagonal of cov estimates") % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError(f"Imaginary component {m}")
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean


def calculate_activation_statistics(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1):
    act = get_activations(files, model, batch_size, dims, device, num_workers)
    mu = np.mean(act, axis=0)
    sigma = np.cov(act, rowvar=False)
    return mu, sigma


def compute_statistics_of_path(path, model, batch_size, dims, device, num_workers=1, flag="ref"):
    if path.endswith(".npz"):
        print("loaded from npz files")
        with np.load(path) as f:
            m, s = f["mu"][:], f["sigma"][:]
    elif path.endswith(".json"):
        with open(path) as file:
            data_dict = json.load(file)
        all_lines = list(data_dict.keys())[:sample_nums]

        files = []
        if isinstance(all_lines, list):
            for k in all_lines:
                v = data_dict[k]
                if "PG-eval-data" in args.img_path:
                    img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg")
                else:
                    img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg")
                files.append(img_path)
        elif isinstance(all_lines, dict):
            assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
            for k, v in all_lines.items():
                if "PG-eval-data" in args.img_path:
                    img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg")
                else:
                    img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg")
                files.append(img_path)

        files = sorted(files)
        m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers)
    else:
        path = pathlib.Path(path)
        files = sorted([file for ext in IMAGE_EXTENSIONS for file in path.glob(f"*.{ext}")])

        m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers)
    return m, s


def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1):
    """Calculates the FID of two paths"""
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError("Invalid path: %s" % p)

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

    model = InceptionV3([block_idx]).to(device)

    m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref")
    m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, dims, device, num_workers, flag="gen")
    fid_value = calculate_frechet_distance(m1, s1, m2, s2)

    return fid_value


def save_fid_stats(paths, batch_size, device, dims, num_workers=1):
    """Calculates the FID of two paths"""
    if not os.path.exists(paths[0]):
        raise RuntimeError("Invalid path: %s" % paths[0])

    if os.path.exists(paths[1]):
        raise RuntimeError("Existing output file: %s" % paths[1])

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

    model = InceptionV3([block_idx]).to(device)

    print(f"Saving statistics for {paths[0]}")

    m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref")
    np.savez_compressed(paths[1], mu=m1, sigma=s1)


def main():
    txt_path = args.txt_path if args.txt_path is not None else args.img_path
    save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}.txt")
    if os.path.exists(save_txt_path):
        with open(save_txt_path) as f:
            fid_value = f.readlines()[0].strip()
        print(f"FID {fid_value}: {args.exp_name}")
        return {args.exp_name: float(fid_value)}

    if args.device is None:
        device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
    else:
        device = torch.device(args.device)

    if args.num_workers is None:
        try:
            num_cpus = len(os.sched_getaffinity(0))
        except AttributeError:
            num_cpus = os.cpu_count()

        num_workers = min(num_cpus, 8) if num_cpus is not None else 0
    else:
        num_workers = args.num_workers

    if args.save_stats:
        save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers)
        return

    fid_value = calculate_fid_given_paths(args.path, args.batch_size, device, args.dims, num_workers)
    print(f"FID {fid_value}: {args.exp_name}")
    with open(save_txt_path, "w") as file:
        file.write(str(fid_value))

    return {args.exp_name: fid_value}


def parse_args():
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use")
    parser.add_argument(
        "--num-workers", type=int, help="Number of processes to use for data loading.  Defaults to `min(8, num_cpus)`"
    )
    parser.add_argument("--img_size", type=int, default=512)
    parser.add_argument("--device", type=str, default="cuda", help="Device to use. Like cuda, cuda:0 or cpu")

    parser.add_argument("--img_path", type=str, default=None)
    parser.add_argument("--exp_name", type=str, default="Sana")
    parser.add_argument("--txt_path", type=str, default=None)
    parser.add_argument("--sample_nums", type=int, default=30_000)

    parser.add_argument(
        "--dims",
        type=int,
        default=2048,
        choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
        help="Dimensionality of Inception features to use.  By default, uses pool3 features",
    )
    parser.add_argument(
        "--save-stats",
        action="store_true",
        help="Generate an npz archive from a directory of samples.  The first path is used as input and the second as output.",
    )
    parser.add_argument("--stat", action="store_true")
    parser.add_argument(
        "--path", type=str, nargs=2, default=["", ""], help="Paths to the generated images or  to .npz statistic files"
    )

    # online logging setting
    parser.add_argument("--log_metric", type=str, default="metric")
    parser.add_argument("--gpu_id", type=int, default=0)
    parser.add_argument("--log_fid", action="store_true")
    parser.add_argument("--suffix_label", type=str, default="", help="used for fid online log")
    parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log")
    parser.add_argument(
        "--report_to",
        type=str,
        default=None,
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="t2i-evit-baseline",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
    parser.add_argument(
        "--name",
        type=str,
        default="baseline",
        help=("Wandb Project Name"),
    )
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    sample_nums = args.sample_nums
    if args.stat:
        if args.device is None:
            device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
        else:
            device = torch.device(args.device)

        if args.num_workers is None:
            try:
                num_cpus = len(os.sched_getaffinity(0))
            except AttributeError:
                num_cpus = os.cpu_count()
            num_workers = min(num_cpus, 8) if num_cpus is not None else 0
        else:
            num_workers = args.num_workers
        save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers)
    else:
        print(args.path, args.exp_name)
        args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
        fid_result = main()
        if args.log_fid:
            tracker(args, fid_result, args.suffix_label, pattern=args.tracker_pattern, metric="FID")