gen6scp's picture
Patched codes for ZeroGPU
d643072
"""
Evaluate generated images using Mask2Former (or other object detector model)
"""
import argparse
import json
import os
import re
import sys
import time
import warnings
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent.parent.parent.parent))
warnings.filterwarnings("ignore")
import mmdet
import numpy as np
import open_clip
import pandas as pd
import torch
from clip_benchmark.metrics import zeroshot_classification as zsc
from mmdet.apis import inference_detector, init_detector
from PIL import Image, ImageOps
from tqdm import tqdm
zsc.tqdm = lambda it, *args, **kwargs: it
from tools.metrics.utils import tracker
# Get directory path
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
assert DEVICE == "cuda"
def timed(fn):
def wrapper(*args, **kwargs):
startt = time.time()
result = fn(*args, **kwargs)
endt = time.time()
print(f"Function {fn.__name__!r} executed in {endt - startt:.3f}s", file=sys.stderr)
return result
return wrapper
# Load models
@timed
def load_models(args):
CONFIG_PATH = args.model_config
OBJECT_DETECTOR = args.options.get("model", "mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco")
CKPT_PATH = os.path.join(args.model_path, f"{OBJECT_DETECTOR}.pth")
object_detector = init_detector(CONFIG_PATH, CKPT_PATH, device=DEVICE)
clip_arch = args.options.get("clip_model", "ViT-L-14")
clip_model, _, transform = open_clip.create_model_and_transforms(clip_arch, pretrained="openai", device=DEVICE)
tokenizer = open_clip.get_tokenizer(clip_arch)
with open(os.path.join(os.path.dirname(__file__), "object_names.txt")) as cls_file:
classnames = [line.strip() for line in cls_file]
return object_detector, (clip_model, transform, tokenizer), classnames
COLORS = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black", "white"]
COLOR_CLASSIFIERS = {}
# Evaluation parts
class ImageCrops(torch.utils.data.Dataset):
def __init__(self, image: Image.Image, objects):
self._image = image.convert("RGB")
bgcolor = args.options.get("bgcolor", "#999")
if bgcolor == "original":
self._blank = self._image.copy()
else:
self._blank = Image.new("RGB", image.size, color=bgcolor)
self._objects = objects
def __len__(self):
return len(self._objects)
def __getitem__(self, index):
box, mask = self._objects[index]
if mask is not None:
assert tuple(self._image.size[::-1]) == tuple(mask.shape), (index, self._image.size[::-1], mask.shape)
image = Image.composite(self._image, self._blank, Image.fromarray(mask))
else:
image = self._image
if args.options.get("crop", "1") == "1":
image = image.crop(box[:4])
# if args.save:
# base_count = len(os.listdir(args.save))
# image.save(os.path.join(args.save, f"cropped_{base_count:05}.png"))
return (transform(image), 0)
def color_classification(image, bboxes, classname):
if classname not in COLOR_CLASSIFIERS:
COLOR_CLASSIFIERS[classname] = zsc.zero_shot_classifier(
clip_model,
tokenizer,
COLORS,
[
f"a photo of a {{c}} {classname}",
f"a photo of a {{c}}-colored {classname}",
f"a photo of a {{c}} object",
],
DEVICE,
)
clf = COLOR_CLASSIFIERS[classname]
dataloader = torch.utils.data.DataLoader(ImageCrops(image, bboxes), batch_size=16, num_workers=4)
with torch.no_grad():
pred, _ = zsc.run_classification(clip_model, clf, dataloader, DEVICE)
return [COLORS[index.item()] for index in pred.argmax(1)]
def compute_iou(box_a, box_b):
area_fn = lambda box: max(box[2] - box[0] + 1, 0) * max(box[3] - box[1] + 1, 0)
i_area = area_fn(
[max(box_a[0], box_b[0]), max(box_a[1], box_b[1]), min(box_a[2], box_b[2]), min(box_a[3], box_b[3])]
)
u_area = area_fn(box_a) + area_fn(box_b) - i_area
return i_area / u_area if u_area else 0
def relative_position(obj_a, obj_b):
"""Give position of A relative to B, factoring in object dimensions"""
boxes = np.array([obj_a[0], obj_b[0]])[:, :4].reshape(2, 2, 2)
center_a, center_b = boxes.mean(axis=-2)
dim_a, dim_b = np.abs(np.diff(boxes, axis=-2))[..., 0, :]
offset = center_a - center_b
#
revised_offset = np.maximum(np.abs(offset) - POSITION_THRESHOLD * (dim_a + dim_b), 0) * np.sign(offset)
if np.all(np.abs(revised_offset) < 1e-3):
return set()
#
dx, dy = revised_offset / np.linalg.norm(offset)
relations = set()
if dx < -0.5:
relations.add("left of")
if dx > 0.5:
relations.add("right of")
if dy < -0.5:
relations.add("above")
if dy > 0.5:
relations.add("below")
return relations
def evaluate(image, objects, metadata):
"""
Evaluate given image using detected objects on the global metadata specifications.
Assumptions:
* Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
* All clauses are independent, i.e., duplicating a clause has no effect on the correctness
* CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
therefore, objects are expected to appear in sorted order
"""
correct = True
reason = []
matched_groups = []
# Check for expected objects
for req in metadata.get("include", []):
classname = req["class"]
matched = True
found_objects = objects.get(classname, [])[: req["count"]]
if len(found_objects) < req["count"]:
correct = matched = False
reason.append(f"expected {classname}>={req['count']}, found {len(found_objects)}")
else:
if "color" in req:
# Color check
colors = color_classification(image, found_objects, classname)
if colors.count(req["color"]) < req["count"]:
correct = matched = False
reason.append(
f"expected {req['color']} {classname}>={req['count']}, found "
+ f"{colors.count(req['color'])} {req['color']}; and "
+ ", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
)
if "position" in req and matched:
# Relative position check
expected_rel, target_group = req["position"]
if matched_groups[target_group] is None:
correct = matched = False
reason.append(f"no target for {classname} to be {expected_rel}")
else:
for obj in found_objects:
for target_obj in matched_groups[target_group]:
true_rels = relative_position(obj, target_obj)
if expected_rel not in true_rels:
correct = matched = False
reason.append(
f"expected {classname} {expected_rel} target, found "
+ f"{' and '.join(true_rels)} target"
)
break
if not matched:
break
if matched:
matched_groups.append(found_objects)
else:
matched_groups.append(None)
# Check for non-expected objects
for req in metadata.get("exclude", []):
classname = req["class"]
if len(objects.get(classname, [])) >= req["count"]:
correct = False
reason.append(f"expected {classname}<{req['count']}, found {len(objects[classname])}")
return correct, "\n".join(reason)
def evaluate_image(filepath, metadata):
result = inference_detector(object_detector, filepath)
bbox = result[0] if isinstance(result, tuple) else result
segm = result[1] if isinstance(result, tuple) and len(result) > 1 else None
image = ImageOps.exif_transpose(Image.open(filepath))
detected = {}
# Determine bounding boxes to keep
confidence_threshold = THRESHOLD if metadata["tag"] != "counting" else COUNTING_THRESHOLD
for index, classname in enumerate(classnames):
ordering = np.argsort(bbox[index][:, 4])[::-1]
ordering = ordering[bbox[index][ordering, 4] > confidence_threshold] # Threshold
ordering = ordering[:MAX_OBJECTS].tolist() # Limit number of detected objects per class
detected[classname] = []
while ordering:
max_obj = ordering.pop(0)
detected[classname].append((bbox[index][max_obj], None if segm is None else segm[index][max_obj]))
ordering = [
obj
for obj in ordering
if NMS_THRESHOLD == 1 or compute_iou(bbox[index][max_obj], bbox[index][obj]) < NMS_THRESHOLD
]
if not detected[classname]:
del detected[classname]
# Evaluate
is_correct, reason = evaluate(image, detected, metadata)
return {
"filename": filepath,
"tag": metadata["tag"],
"prompt": metadata["prompt"],
"correct": is_correct,
"reason": reason,
"metadata": json.dumps(metadata),
"details": json.dumps({key: [box.tolist() for box, _ in value] for key, value in detected.items()}),
}
def main(args):
full_results = []
image_dir = str(os.path.join(args.img_path, args.exp_name))
args.outfile = f"{image_dir}_geneval.jsonl"
if os.path.exists(args.outfile):
df = pd.read_json(args.outfile, orient="records", lines=True)
return {args.exp_name: df}
for subfolder in tqdm(os.listdir(image_dir), f"Detecting on {args.gpu_id}"):
folderpath = os.path.join(image_dir, subfolder)
if not os.path.isdir(folderpath) or not subfolder.isdigit():
continue
with open(os.path.join(folderpath, "metadata.jsonl")) as fp:
metadata = json.load(fp)
# Evaluate each image
for imagename in os.listdir(os.path.join(folderpath, "samples")):
imagepath = os.path.join(folderpath, "samples", imagename)
if not os.path.isfile(imagepath) or not re.match(r"\d+\.png", imagename):
continue
result = evaluate_image(imagepath, metadata)
full_results.append(result)
# Save results
if os.path.dirname(args.outfile):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
with open(args.outfile, "w") as fp:
pd.DataFrame(full_results).to_json(fp, orient="records", lines=True)
df = pd.read_json(args.outfile, orient="records", lines=True)
return {args.exp_name: df}
def tracker_ori(df_dict, label=""):
if args.report_to == "wandb":
import wandb
wandb_name = f"[{args.log_metric}]_[{args.name}]"
wandb.init(project=args.tracker_project_name, name=wandb_name, resume="allow", id=wandb_name, tags="metrics")
run = wandb.run
run.define_metric("custom_step")
run.define_metric(f"GenEval_Overall_Score({label})", step_metric="custom_step")
for exp_name, df in df_dict.items():
steps = []
# 在函数内初始化wandb表格
wandb_table = wandb.Table(columns=["Metric", "Value"])
# 计算总图像数、总提示数、正确图像百分比和正确提示百分比
total_images = len(df)
total_prompts = len(df.groupby("metadata"))
percentage_correct_images = df["correct"].mean()
percentage_correct_prompts = df.groupby("metadata")["correct"].any().mean()
wandb_table.add_data("Total images", total_images)
wandb_table.add_data("Total prompts", total_prompts)
wandb_table.add_data("% correct images", f"{percentage_correct_images:.2%}")
wandb_table.add_data("% correct prompts", f"{percentage_correct_prompts:.2%}")
task_scores = []
for tag, task_df in df.groupby("tag", sort=False):
task_score = task_df["correct"].mean()
task_scores.append(task_score)
task_result = f"{tag:<16} = {task_score:.2%} ({task_df['correct'].sum()} / {len(task_df)})"
print(task_result)
# 将任务得分添加到表格中
wandb_table.add_data(tag, f"{task_score:.2%} ({task_df['correct'].sum()} / {len(task_df)})")
# 计算整体得分
overall_score = np.mean(task_scores)
print(f"Overall score (avg. over tasks): {overall_score:.5f}")
# 处理exp_name中的步骤
match = re.search(r".*epoch(\d+)_step(\d+).*", exp_name)
if match:
epoch_name, step_name = match.groups()
step = int(step_name)
steps.append(step)
# 记录每个步骤和对应的整体得分
run.log({"custom_step": step, f"GenEval_Overall_Score({label})": overall_score})
# 记录表格到wandb
run.log({"Metrics Table": wandb_table})
else:
print(f"{args.report_to} is not supported")
def log_results(df_dict):
# Measure overall success
for exp_name, df in df_dict.items():
print("Summary")
print("=======")
print(f"Total images: {len(df)}")
print(f"Total prompts: {len(df.groupby('metadata'))}")
print(f"% correct images: {df['correct'].mean():.2%}")
print(f"% correct prompts: {df.groupby('metadata')['correct'].any().mean():.2%}")
print()
# By group
task_scores = []
print("Task breakdown")
print("==============")
for tag, task_df in df.groupby("tag", sort=False):
task_scores.append(task_df["correct"].mean())
print(f"{tag:<16} = {task_df['correct'].mean():.2%} ({task_df['correct'].sum()} / {len(task_df)})")
print()
print(f"Overall score (avg. over tasks): {np.mean(task_scores):.5f}")
return {exp_name: np.mean(task_scores)}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--img_path", type=str, default=None)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument("--outfile", type=str, default="results.jsonl")
parser.add_argument("--model-config", type=str, default=None)
parser.add_argument("--model-path", type=str, default=None)
parser.add_argument("--gpu_id", type=int, default=0)
# Other arguments
parser.add_argument("--options", nargs="*", type=str, default=[])
# wandb report
parser.add_argument("--log_geneval", action="store_true")
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--suffix_label", type=str, default="", help="used for clip_score online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for GenEval online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
args.options = dict(opt.split("=", 1) for opt in args.options)
if args.model_config is None:
args.model_config = os.path.join(
os.path.dirname(mmdet.__file__), "../configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py"
)
return args
if __name__ == "__main__":
args = parse_args()
object_detector, (clip_model, transform, tokenizer), classnames = load_models(args)
THRESHOLD = float(args.options.get("threshold", 0.3))
COUNTING_THRESHOLD = float(args.options.get("counting_threshold", 0.9))
MAX_OBJECTS = int(args.options.get("max_objects", 16))
NMS_THRESHOLD = float(args.options.get("max_overlap", 1.0))
POSITION_THRESHOLD = float(args.options.get("position_threshold", 0.1))
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
df_dict = main(args)
geneval_result = log_results(df_dict)
if args.log_geneval:
# tracker_ori(df_dict, args.suffix_label)
tracker(args, geneval_result, args.suffix_label, pattern=args.tracker_pattern, metric="GenEval")