File size: 17,227 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
"""
Evaluate generated images using Mask2Former (or other object detector model)
"""
import argparse
import json
import os
import re
import sys
import time
import warnings
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent.parent.parent.parent))
warnings.filterwarnings("ignore")
import mmdet
import numpy as np
import open_clip
import pandas as pd
import torch
from clip_benchmark.metrics import zeroshot_classification as zsc
from mmdet.apis import inference_detector, init_detector
from PIL import Image, ImageOps
from tqdm import tqdm
zsc.tqdm = lambda it, *args, **kwargs: it
from tools.metrics.utils import tracker
# Get directory path
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
assert DEVICE == "cuda"
def timed(fn):
def wrapper(*args, **kwargs):
startt = time.time()
result = fn(*args, **kwargs)
endt = time.time()
print(f"Function {fn.__name__!r} executed in {endt - startt:.3f}s", file=sys.stderr)
return result
return wrapper
# Load models
@timed
def load_models(args):
CONFIG_PATH = args.model_config
OBJECT_DETECTOR = args.options.get("model", "mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco")
CKPT_PATH = os.path.join(args.model_path, f"{OBJECT_DETECTOR}.pth")
object_detector = init_detector(CONFIG_PATH, CKPT_PATH, device=DEVICE)
clip_arch = args.options.get("clip_model", "ViT-L-14")
clip_model, _, transform = open_clip.create_model_and_transforms(clip_arch, pretrained="openai", device=DEVICE)
tokenizer = open_clip.get_tokenizer(clip_arch)
with open(os.path.join(os.path.dirname(__file__), "object_names.txt")) as cls_file:
classnames = [line.strip() for line in cls_file]
return object_detector, (clip_model, transform, tokenizer), classnames
COLORS = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black", "white"]
COLOR_CLASSIFIERS = {}
# Evaluation parts
class ImageCrops(torch.utils.data.Dataset):
def __init__(self, image: Image.Image, objects):
self._image = image.convert("RGB")
bgcolor = args.options.get("bgcolor", "#999")
if bgcolor == "original":
self._blank = self._image.copy()
else:
self._blank = Image.new("RGB", image.size, color=bgcolor)
self._objects = objects
def __len__(self):
return len(self._objects)
def __getitem__(self, index):
box, mask = self._objects[index]
if mask is not None:
assert tuple(self._image.size[::-1]) == tuple(mask.shape), (index, self._image.size[::-1], mask.shape)
image = Image.composite(self._image, self._blank, Image.fromarray(mask))
else:
image = self._image
if args.options.get("crop", "1") == "1":
image = image.crop(box[:4])
# if args.save:
# base_count = len(os.listdir(args.save))
# image.save(os.path.join(args.save, f"cropped_{base_count:05}.png"))
return (transform(image), 0)
def color_classification(image, bboxes, classname):
if classname not in COLOR_CLASSIFIERS:
COLOR_CLASSIFIERS[classname] = zsc.zero_shot_classifier(
clip_model,
tokenizer,
COLORS,
[
f"a photo of a {{c}} {classname}",
f"a photo of a {{c}}-colored {classname}",
f"a photo of a {{c}} object",
],
DEVICE,
)
clf = COLOR_CLASSIFIERS[classname]
dataloader = torch.utils.data.DataLoader(ImageCrops(image, bboxes), batch_size=16, num_workers=4)
with torch.no_grad():
pred, _ = zsc.run_classification(clip_model, clf, dataloader, DEVICE)
return [COLORS[index.item()] for index in pred.argmax(1)]
def compute_iou(box_a, box_b):
area_fn = lambda box: max(box[2] - box[0] + 1, 0) * max(box[3] - box[1] + 1, 0)
i_area = area_fn(
[max(box_a[0], box_b[0]), max(box_a[1], box_b[1]), min(box_a[2], box_b[2]), min(box_a[3], box_b[3])]
)
u_area = area_fn(box_a) + area_fn(box_b) - i_area
return i_area / u_area if u_area else 0
def relative_position(obj_a, obj_b):
"""Give position of A relative to B, factoring in object dimensions"""
boxes = np.array([obj_a[0], obj_b[0]])[:, :4].reshape(2, 2, 2)
center_a, center_b = boxes.mean(axis=-2)
dim_a, dim_b = np.abs(np.diff(boxes, axis=-2))[..., 0, :]
offset = center_a - center_b
#
revised_offset = np.maximum(np.abs(offset) - POSITION_THRESHOLD * (dim_a + dim_b), 0) * np.sign(offset)
if np.all(np.abs(revised_offset) < 1e-3):
return set()
#
dx, dy = revised_offset / np.linalg.norm(offset)
relations = set()
if dx < -0.5:
relations.add("left of")
if dx > 0.5:
relations.add("right of")
if dy < -0.5:
relations.add("above")
if dy > 0.5:
relations.add("below")
return relations
def evaluate(image, objects, metadata):
"""
Evaluate given image using detected objects on the global metadata specifications.
Assumptions:
* Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
* All clauses are independent, i.e., duplicating a clause has no effect on the correctness
* CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
therefore, objects are expected to appear in sorted order
"""
correct = True
reason = []
matched_groups = []
# Check for expected objects
for req in metadata.get("include", []):
classname = req["class"]
matched = True
found_objects = objects.get(classname, [])[: req["count"]]
if len(found_objects) < req["count"]:
correct = matched = False
reason.append(f"expected {classname}>={req['count']}, found {len(found_objects)}")
else:
if "color" in req:
# Color check
colors = color_classification(image, found_objects, classname)
if colors.count(req["color"]) < req["count"]:
correct = matched = False
reason.append(
f"expected {req['color']} {classname}>={req['count']}, found "
+ f"{colors.count(req['color'])} {req['color']}; and "
+ ", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
)
if "position" in req and matched:
# Relative position check
expected_rel, target_group = req["position"]
if matched_groups[target_group] is None:
correct = matched = False
reason.append(f"no target for {classname} to be {expected_rel}")
else:
for obj in found_objects:
for target_obj in matched_groups[target_group]:
true_rels = relative_position(obj, target_obj)
if expected_rel not in true_rels:
correct = matched = False
reason.append(
f"expected {classname} {expected_rel} target, found "
+ f"{' and '.join(true_rels)} target"
)
break
if not matched:
break
if matched:
matched_groups.append(found_objects)
else:
matched_groups.append(None)
# Check for non-expected objects
for req in metadata.get("exclude", []):
classname = req["class"]
if len(objects.get(classname, [])) >= req["count"]:
correct = False
reason.append(f"expected {classname}<{req['count']}, found {len(objects[classname])}")
return correct, "\n".join(reason)
def evaluate_image(filepath, metadata):
result = inference_detector(object_detector, filepath)
bbox = result[0] if isinstance(result, tuple) else result
segm = result[1] if isinstance(result, tuple) and len(result) > 1 else None
image = ImageOps.exif_transpose(Image.open(filepath))
detected = {}
# Determine bounding boxes to keep
confidence_threshold = THRESHOLD if metadata["tag"] != "counting" else COUNTING_THRESHOLD
for index, classname in enumerate(classnames):
ordering = np.argsort(bbox[index][:, 4])[::-1]
ordering = ordering[bbox[index][ordering, 4] > confidence_threshold] # Threshold
ordering = ordering[:MAX_OBJECTS].tolist() # Limit number of detected objects per class
detected[classname] = []
while ordering:
max_obj = ordering.pop(0)
detected[classname].append((bbox[index][max_obj], None if segm is None else segm[index][max_obj]))
ordering = [
obj
for obj in ordering
if NMS_THRESHOLD == 1 or compute_iou(bbox[index][max_obj], bbox[index][obj]) < NMS_THRESHOLD
]
if not detected[classname]:
del detected[classname]
# Evaluate
is_correct, reason = evaluate(image, detected, metadata)
return {
"filename": filepath,
"tag": metadata["tag"],
"prompt": metadata["prompt"],
"correct": is_correct,
"reason": reason,
"metadata": json.dumps(metadata),
"details": json.dumps({key: [box.tolist() for box, _ in value] for key, value in detected.items()}),
}
def main(args):
full_results = []
image_dir = str(os.path.join(args.img_path, args.exp_name))
args.outfile = f"{image_dir}_geneval.jsonl"
if os.path.exists(args.outfile):
df = pd.read_json(args.outfile, orient="records", lines=True)
return {args.exp_name: df}
for subfolder in tqdm(os.listdir(image_dir), f"Detecting on {args.gpu_id}"):
folderpath = os.path.join(image_dir, subfolder)
if not os.path.isdir(folderpath) or not subfolder.isdigit():
continue
with open(os.path.join(folderpath, "metadata.jsonl")) as fp:
metadata = json.load(fp)
# Evaluate each image
for imagename in os.listdir(os.path.join(folderpath, "samples")):
imagepath = os.path.join(folderpath, "samples", imagename)
if not os.path.isfile(imagepath) or not re.match(r"\d+\.png", imagename):
continue
result = evaluate_image(imagepath, metadata)
full_results.append(result)
# Save results
if os.path.dirname(args.outfile):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
with open(args.outfile, "w") as fp:
pd.DataFrame(full_results).to_json(fp, orient="records", lines=True)
df = pd.read_json(args.outfile, orient="records", lines=True)
return {args.exp_name: df}
def tracker_ori(df_dict, label=""):
if args.report_to == "wandb":
import wandb
wandb_name = f"[{args.log_metric}]_[{args.name}]"
wandb.init(project=args.tracker_project_name, name=wandb_name, resume="allow", id=wandb_name, tags="metrics")
run = wandb.run
run.define_metric("custom_step")
run.define_metric(f"GenEval_Overall_Score({label})", step_metric="custom_step")
for exp_name, df in df_dict.items():
steps = []
# 在函数内初始化wandb表格
wandb_table = wandb.Table(columns=["Metric", "Value"])
# 计算总图像数、总提示数、正确图像百分比和正确提示百分比
total_images = len(df)
total_prompts = len(df.groupby("metadata"))
percentage_correct_images = df["correct"].mean()
percentage_correct_prompts = df.groupby("metadata")["correct"].any().mean()
wandb_table.add_data("Total images", total_images)
wandb_table.add_data("Total prompts", total_prompts)
wandb_table.add_data("% correct images", f"{percentage_correct_images:.2%}")
wandb_table.add_data("% correct prompts", f"{percentage_correct_prompts:.2%}")
task_scores = []
for tag, task_df in df.groupby("tag", sort=False):
task_score = task_df["correct"].mean()
task_scores.append(task_score)
task_result = f"{tag:<16} = {task_score:.2%} ({task_df['correct'].sum()} / {len(task_df)})"
print(task_result)
# 将任务得分添加到表格中
wandb_table.add_data(tag, f"{task_score:.2%} ({task_df['correct'].sum()} / {len(task_df)})")
# 计算整体得分
overall_score = np.mean(task_scores)
print(f"Overall score (avg. over tasks): {overall_score:.5f}")
# 处理exp_name中的步骤
match = re.search(r".*epoch(\d+)_step(\d+).*", exp_name)
if match:
epoch_name, step_name = match.groups()
step = int(step_name)
steps.append(step)
# 记录每个步骤和对应的整体得分
run.log({"custom_step": step, f"GenEval_Overall_Score({label})": overall_score})
# 记录表格到wandb
run.log({"Metrics Table": wandb_table})
else:
print(f"{args.report_to} is not supported")
def log_results(df_dict):
# Measure overall success
for exp_name, df in df_dict.items():
print("Summary")
print("=======")
print(f"Total images: {len(df)}")
print(f"Total prompts: {len(df.groupby('metadata'))}")
print(f"% correct images: {df['correct'].mean():.2%}")
print(f"% correct prompts: {df.groupby('metadata')['correct'].any().mean():.2%}")
print()
# By group
task_scores = []
print("Task breakdown")
print("==============")
for tag, task_df in df.groupby("tag", sort=False):
task_scores.append(task_df["correct"].mean())
print(f"{tag:<16} = {task_df['correct'].mean():.2%} ({task_df['correct'].sum()} / {len(task_df)})")
print()
print(f"Overall score (avg. over tasks): {np.mean(task_scores):.5f}")
return {exp_name: np.mean(task_scores)}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--img_path", type=str, default=None)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument("--outfile", type=str, default="results.jsonl")
parser.add_argument("--model-config", type=str, default=None)
parser.add_argument("--model-path", type=str, default=None)
parser.add_argument("--gpu_id", type=int, default=0)
# Other arguments
parser.add_argument("--options", nargs="*", type=str, default=[])
# wandb report
parser.add_argument("--log_geneval", action="store_true")
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--suffix_label", type=str, default="", help="used for clip_score online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for GenEval online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
args.options = dict(opt.split("=", 1) for opt in args.options)
if args.model_config is None:
args.model_config = os.path.join(
os.path.dirname(mmdet.__file__), "../configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py"
)
return args
if __name__ == "__main__":
args = parse_args()
object_detector, (clip_model, transform, tokenizer), classnames = load_models(args)
THRESHOLD = float(args.options.get("threshold", 0.3))
COUNTING_THRESHOLD = float(args.options.get("counting_threshold", 0.9))
MAX_OBJECTS = int(args.options.get("max_objects", 16))
NMS_THRESHOLD = float(args.options.get("max_overlap", 1.0))
POSITION_THRESHOLD = float(args.options.get("position_threshold", 0.1))
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
df_dict = main(args)
geneval_result = log_results(df_dict)
if args.log_geneval:
# tracker_ori(df_dict, args.suffix_label)
tracker(args, geneval_result, args.suffix_label, pattern=args.tracker_pattern, metric="GenEval")
|