sana-zero / asset /docs /metrics_toolkit.md
gen6scp's picture
Patched codes for ZeroGPU
d643072
# πŸ’» How to Inference & Test Metrics (FID, CLIP Score, GenEval, DPG-Bench, etc...)
This ToolKit will automatically inference your model and log the metrics results onto wandb as chart for better illustration. We curerntly support:
- \[x\] [FID](https://github.com/mseitzer/pytorch-fid) & [CLIP-Score](https://github.com/openai/CLIP)
- \[x\] [GenEval](https://github.com/djghosh13/geneval)
- \[x\] [DPG-Bench](https://github.com/TencentQQGYLab/ELLA)
- \[x\] [ImageReward](https://github.com/THUDM/ImageReward/tree/main)
### 0. Install corresponding env for GenEval and DPG-Bench
Make sure you can activate the following envs:
- `conda activate geneval`([GenEval](https://github.com/djghosh13/geneval))
- `conda activate dpg`([DGB-Bench](https://github.com/TencentQQGYLab/ELLA))
### 0.1 Prepare data.
Metirc FID & CLIP-Score on [MJHQ-30K](https://huggingface.co/datasets/playgroundai/MJHQ-30K)
```python
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="playgroundai/MJHQ-30K",
filename="mjhq30k_imgs.zip",
local_dir="data/test/PG-eval-data/MJHQ-30K/",
repo_type="dataset"
)
```
Unzip mjhq30k_imgs.zip into its per-category folder structure.
```
data/test/PG-eval-data/MJHQ-30K/imgs/
β”œβ”€β”€ animals
β”œβ”€β”€ art
β”œβ”€β”€ fashion
β”œβ”€β”€ food
β”œβ”€β”€ indoor
β”œβ”€β”€ landscape
β”œβ”€β”€ logo
β”œβ”€β”€ people
β”œβ”€β”€ plants
└── vehicles
```
### 0.2 Prepare checkpoints
```bash
huggingface-cli download Efficient-Large-Model/Sana_1600M_1024px --repo-type model --local-dir ./output/Sana_1600M_1024px --local-dir-use-symlinks False
```
### 1. directly \[Inference and Metric\] a .pth file
```bash
# We provide four scripts for evaluating metrics:
fid_clipscore_launch=scripts/bash_run_inference_metric.sh
geneval_launch=scripts/bash_run_inference_metric_geneval.sh
dpg_launch=scripts/bash_run_inference_metric_dpg.sh
image_reward_launch=scripts/bash_run_inference_metric_imagereward.sh
# Use following format to metric your models:
# bash $correspoinding_metric_launch $your_config_file_path $your_relative_pth_file_path
# example
bash $geneval_launch \
configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
output/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth
```
### 2. \[Inference and Metric\] a list of .pth files using a txt file
You can also write all your pth files of a job in one txt file, eg. [model_paths.txt](../model_paths.txt)
```bash
# Use following format to metric your models, gathering in a txt file:
# bash $correspoinding_metric_launch $your_config_file_path $your_txt_file_path_containing_pth_path
# We suggest follow the file tree structure in our project for robust experiment
# example
bash scripts/bash_run_inference_metric.sh \
configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
asset/model_paths.txt
```
### 3. You will get the following data tree.
```
output
β”œβ”€β”€your_job_name/ (everything will be saved here)
β”‚ β”œβ”€β”€config.yaml
β”‚ β”œβ”€β”€train_log.log
β”‚ β”œβ”€β”€checkpoints (all checkpoints)
β”‚ β”‚ β”œβ”€β”€epoch_1_step_6666.pth
β”‚ β”‚ β”œβ”€β”€epoch_1_step_8888.pth
β”‚ β”‚ β”œβ”€β”€......
β”‚ β”œβ”€β”€vis (all visualization result dirs)
β”‚ β”‚ β”œβ”€β”€visualization_file_name
β”‚ β”‚ β”‚ β”œβ”€β”€xxxxxxx.jpg
β”‚ β”‚ β”‚ β”œβ”€β”€......
β”‚ β”‚ β”œβ”€β”€visualization_file_name2
β”‚ β”‚ β”‚ β”œβ”€β”€xxxxxxx.jpg
β”‚ β”‚ β”‚ β”œβ”€β”€......
β”‚ β”œβ”€β”€......
β”‚ β”œβ”€β”€metrics (all metrics testing related files)
β”‚ β”‚ β”œβ”€β”€model_paths.txt Optional(πŸ‘ˆ)(relative path of testing ckpts)
β”‚ β”‚ β”‚ β”œβ”€β”€output/your_job_name/checkpoings/epoch_1_step_6666.pth
β”‚ β”‚ β”‚ β”œβ”€β”€output/your_job_name/checkpoings/epoch_1_step_8888.pth
β”‚ β”‚ β”œβ”€β”€fid_img_paths.txt Optional(πŸ‘ˆ)(name of testing img_dir in vis)
β”‚ β”‚ β”‚ β”œβ”€β”€visualization_file_name
β”‚ β”‚ β”‚ β”œβ”€β”€visualization_file_name2
β”‚ β”‚ β”œβ”€β”€cached_img_paths.txt Optional(πŸ‘ˆ)
β”‚ β”‚ β”œβ”€β”€......
```