geethareddy's picture
Update app.py
87a883e verified
raw
history blame
6.31 kB
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
pytesseract.get_tesseract_version() # Test Tesseract availability
logging.info("Tesseract is available")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
def preprocess_image(img_cv):
"""Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance contrast with CLAHE
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Reduce noise with Gaussian blur
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding for better binary image representation
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to bring out more details in the numbers
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharpened = cv2.filter2D(thresh, -1, kernel)
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
def detect_roi(img_cv):
"""Detect the region of interest (ROI) containing the weight display."""
try:
# Convert to grayscale for edge detection
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Apply edge detection
edges = cv2.Canny(gray, 50, 150)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
logging.warning("No contours detected for ROI")
return img_cv # Return full image if no contours found
# Find the largest contour (assuming it’s the display)
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
# Add padding to the detected region to ensure weight is fully captured
padding = 10
x = max(0, x - padding)
y = max(0, y - padding)
w = min(img_cv.shape[1] - x, w + 2 * padding)
h = min(img_cv.shape[0] - y, h + 2 * padding)
roi = img_cv[y:y+h, x:x+w]
logging.info(f"ROI detected at ({x}, {y}, {w}, {h})")
return roi
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
return img_cv
def extract_weight(img):
"""Extract weight from image using Tesseract OCR with improved configuration."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Detect ROI
roi_img = detect_roi(img_cv)
# Preprocess the ROI
processed_img = preprocess_image(roi_img)
# OCR configuration for digit extraction
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
# Run OCR
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
# Extract valid weight from OCR result
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0: # Only accept valid weights
confidence = 95.0 # Assume high confidence if we have a valid weight
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence
except ValueError:
logging.warning(f"Invalid number format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0
def process_image(img):
"""Process uploaded or captured image and extract weight."""
if img is None:
logging.error("No image provided")
return "No image uploaded", None, None, None, gr.update(visible=False), gr.update(visible=False)
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
weight, confidence = extract_weight(img)
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, None, gr.update(visible=True), gr.update(visible=False)
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, None, gr.update(visible=True), gr.update(visible=True)
# Gradio Interface
with gr.Blocks(title="⚖️ Auto Weight Logger") as demo:
gr.Markdown("## ⚖️ Auto Weight Logger")
gr.Markdown("📷 Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="⚖️ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="🕒 Captured At (IST)")
snapshot = gr.Image(label="📸 Snapshot Image")
submit = gr.Button("🔍 Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()