File size: 6,309 Bytes
0507081
1a5f8fd
 
1d1e3da
 
 
1a5f8fd
 
 
87a883e
1a5f8fd
1d1e3da
 
 
 
87a883e
49bdc4d
 
 
 
 
 
1a5f8fd
49bdc4d
 
 
 
 
87a883e
49bdc4d
 
 
 
496e98a
49bdc4d
496e98a
49bdc4d
 
 
 
 
87a883e
49bdc4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496e98a
49bdc4d
 
 
 
 
 
 
 
 
 
 
 
1a5f8fd
c0652ff
1a5f8fd
49bdc4d
 
 
 
1a5f8fd
 
49bdc4d
 
 
 
 
c0652ff
 
49bdc4d
c0652ff
 
 
 
 
 
 
49bdc4d
 
c0652ff
 
49bdc4d
 
 
 
 
c0652ff
49bdc4d
1a5f8fd
 
 
 
0507081
1a5f8fd
0507081
49bdc4d
1d1e3da
5699ebb
0507081
1a5f8fd
5699ebb
1a5f8fd
49bdc4d
87a883e
5699ebb
87a883e
06308c8
1a5f8fd
0507081
 
1d1e3da
06308c8
0507081
58fea44
0507081
06308c8
0507081
 
 
06308c8
0507081
1d1e3da
 
 
87a883e
1d1e3da
 
 
 
49bdc4d
1d1e3da
87a883e
1d1e3da
06308c8
1a5f8fd
496e98a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
import os

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Configure Tesseract path
try:
    pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
    pytesseract.get_tesseract_version()  # Test Tesseract availability
    logging.info("Tesseract is available")
except Exception as e:
    logging.error(f"Tesseract not found or misconfigured: {str(e)}")

def preprocess_image(img_cv):
    """Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
    try:
        # Convert to grayscale
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        # Enhance contrast with CLAHE
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
        contrast = clahe.apply(gray)
        # Reduce noise with Gaussian blur
        blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
        # Apply adaptive thresholding for better binary image representation
        thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
        # Sharpen the image to bring out more details in the numbers
        kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
        sharpened = cv2.filter2D(thresh, -1, kernel)
        return sharpened
    except Exception as e:
        logging.error(f"Image preprocessing failed: {str(e)}")
        return img_cv

def detect_roi(img_cv):
    """Detect the region of interest (ROI) containing the weight display."""
    try:
        # Convert to grayscale for edge detection
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        # Apply edge detection
        edges = cv2.Canny(gray, 50, 150)
        # Find contours
        contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        if not contours:
            logging.warning("No contours detected for ROI")
            return img_cv  # Return full image if no contours found
        
        # Find the largest contour (assuming it’s the display)
        largest_contour = max(contours, key=cv2.contourArea)
        x, y, w, h = cv2.boundingRect(largest_contour)
        # Add padding to the detected region to ensure weight is fully captured
        padding = 10
        x = max(0, x - padding)
        y = max(0, y - padding)
        w = min(img_cv.shape[1] - x, w + 2 * padding)
        h = min(img_cv.shape[0] - y, h + 2 * padding)
        roi = img_cv[y:y+h, x:x+w]
        logging.info(f"ROI detected at ({x}, {y}, {w}, {h})")
        return roi
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img_cv

def extract_weight(img):
    """Extract weight from image using Tesseract OCR with improved configuration."""
    try:
        if img is None:
            logging.error("No image provided for OCR")
            return "Not detected", 0.0
        
        # Convert PIL image to OpenCV format
        img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        # Detect ROI
        roi_img = detect_roi(img_cv)
        # Preprocess the ROI
        processed_img = preprocess_image(roi_img)
        
        # OCR configuration for digit extraction
        custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
        
        # Run OCR
        text = pytesseract.image_to_string(processed_img, config=custom_config)
        logging.info(f"OCR result: '{text}'")
        
        # Extract valid weight from OCR result
        weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
        if weight:
            try:
                weight_float = float(weight)
                if weight_float >= 0:  # Only accept valid weights
                    confidence = 95.0  # Assume high confidence if we have a valid weight
                    logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
                    return weight, confidence
            except ValueError:
                logging.warning(f"Invalid number format: {weight}")
        
        logging.error("OCR failed to detect a valid weight")
        return "Not detected", 0.0
    except Exception as e:
        logging.error(f"OCR processing failed: {str(e)}")
        return "Not detected", 0.0

def process_image(img):
    """Process uploaded or captured image and extract weight."""
    if img is None:
        logging.error("No image provided")
        return "No image uploaded", None, None, None, gr.update(visible=False), gr.update(visible=False)
    
    ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
    weight, confidence = extract_weight(img)
    
    if weight == "Not detected" or confidence < 95.0:
        logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
        return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, None, gr.update(visible=True), gr.update(visible=False)
    
    return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, None, gr.update(visible=True), gr.update(visible=True)

# Gradio Interface
with gr.Blocks(title="⚖️ Auto Weight Logger") as demo:
    gr.Markdown("## ⚖️ Auto Weight Logger")
    gr.Markdown("📷 Upload or capture an image of a digital weight scale (max 5MB).")

    with gr.Row():
        image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
        output_weight = gr.Textbox(label="⚖️ Detected Weight (in kg)")

    with gr.Row():
        timestamp = gr.Textbox(label="🕒 Captured At (IST)")
        snapshot = gr.Image(label="📸 Snapshot Image")

    submit = gr.Button("🔍 Detect Weight")
    submit.click(
        fn=process_image,
        inputs=image_input,
        outputs=[output_weight, timestamp, snapshot]
    )

    gr.Markdown("""
    ### Instructions
    - Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
    - Ensure the image is < 5MB (automatically resized if larger).
    - Review the detected weight and try again if it's incorrect.
    """)

if __name__ == "__main__":
    demo.launch()