File size: 17,305 Bytes
3cf6c5a 6b5ac9a 52d3389 6b5ac9a 52d3389 60532a1 6b5ac9a 3cf6c5a eb592fa 52d3389 183e719 60532a1 212ff4c 6b5ac9a 183e719 6b5ac9a 52d3389 6b5ac9a aad4327 6b5ac9a 070f7e7 6b5ac9a 3cf6c5a 6b5ac9a ca665cb 6b5ac9a 3cf6c5a 6b5ac9a 183e719 d141c1f 6b5ac9a ca665cb 6b5ac9a 3cf6c5a 6b5ac9a 3cf6c5a 212ff4c c9b82b3 212ff4c 6b5ac9a 3cf6c5a 6b5ac9a 212ff4c 6b5ac9a 212ff4c 5f5f1b6 212ff4c 5f5f1b6 3e469b9 6b5ac9a 212ff4c 6b5ac9a 212ff4c f0bc02d 212ff4c 5f5f1b6 212ff4c 5f5f1b6 212ff4c 5f5f1b6 212ff4c 3e469b9 212ff4c 6b5ac9a 212ff4c 3cf6c5a 6b5ac9a 3cf6c5a 6b5ac9a ca665cb 484f007 ca665cb 6b5ac9a 3cf6c5a 6b5ac9a 183e719 6b5ac9a aad4327 6b5ac9a 028eb6e 6b5ac9a ca665cb 028eb6e ca665cb 6b5ac9a aad4327 6b5ac9a aad4327 6b5ac9a 3cf6c5a 6b5ac9a 070f7e7 6b5ac9a 6919cca 9644b48 6919cca 183e719 6919cca 52d3389 9644b48 52d3389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# __future__ annotations is necessary for the type hints to work in this file
from __future__ import annotations
from dataclasses import dataclass
from typing import AsyncGenerator, List, Dict, Any, Optional
import chromadb
from pydantic import BaseModel
from pydantic_graph import BaseNode, EndStep, Graph, GraphRunContext, End, HistoryStep
from knowlang.configs.config import AppConfig, RerankerConfig, EmbeddingConfig
from knowlang.utils.fancy_log import FancyLogger
from pydantic_ai import Agent
import logfire
from pprint import pformat
from enum import Enum
from rich.console import Console
from knowlang.utils.model_provider import create_pydantic_model
from knowlang.utils.chunking_util import truncate_chunk
from knowlang.models.embeddings import EmbeddingInputType, generate_embedding
import voyageai
from voyageai.object.reranking import RerankingObject
LOG = FancyLogger(__name__)
console = Console()
class ChatStatus(str, Enum):
"""Enum for tracking chat progress status"""
STARTING = "starting"
POLISHING = "polishing"
RETRIEVING = "retrieving"
ANSWERING = "answering"
COMPLETE = "complete"
ERROR = "error"
class StreamingChatResult(BaseModel):
"""Extended chat result with streaming information"""
answer: str
retrieved_context: Optional[RetrievedContext] = None
status: ChatStatus
progress_message: str
@classmethod
def from_node(cls, node: BaseNode, state: ChatGraphState) -> StreamingChatResult:
"""Create a StreamingChatResult from a node's current state"""
if isinstance(node, PolishQuestionNode):
return cls(
answer="",
status=ChatStatus.POLISHING,
progress_message=f"Refining question: '{state.original_question}'"
)
elif isinstance(node, RetrieveContextNode):
return cls(
answer="",
status=ChatStatus.RETRIEVING,
progress_message=f"Searching codebase with: '{state.polished_question or state.original_question}'"
)
elif isinstance(node, AnswerQuestionNode):
context_msg = f"Found {len(state.retrieved_context.chunks)} relevant segments" if state.retrieved_context else "No context found"
return cls(
answer="",
retrieved_context=state.retrieved_context,
status=ChatStatus.ANSWERING,
progress_message=f"Generating answer... {context_msg}"
)
else:
return cls(
answer="",
status=ChatStatus.ERROR,
progress_message=f"Unknown node type: {type(node).__name__}"
)
@classmethod
def complete(cls, result: ChatResult) -> StreamingChatResult:
"""Create a completed StreamingChatResult"""
return cls(
answer=result.answer,
retrieved_context=result.retrieved_context,
status=ChatStatus.COMPLETE,
progress_message="Response complete"
)
@classmethod
def error(cls, error_msg: str) -> StreamingChatResult:
"""Create an error StreamingChatResult"""
return cls(
answer=f"Error: {error_msg}",
status=ChatStatus.ERROR,
progress_message=f"An error occurred: {error_msg}"
)
class RetrievedContext(BaseModel):
"""Structure for retrieved context"""
chunks: List[str]
metadatas: List[Dict[str, Any]]
class ChatResult(BaseModel):
"""Final result from the chat graph"""
answer: str
retrieved_context: Optional[RetrievedContext] = None
@dataclass
class ChatGraphState:
"""State maintained throughout the graph execution"""
original_question: str
polished_question: Optional[str] = None
retrieved_context: Optional[RetrievedContext] = None
@dataclass
class ChatGraphDeps:
"""Dependencies required by the graph"""
collection: chromadb.Collection
config: AppConfig
# Graph Nodes
@dataclass
class PolishQuestionNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
"""Node that polishes the user's question"""
system_prompt = """You are a code question refinement expert. Your ONLY task is to rephrase questions
to be more precise for code context retrieval. Follow these rules strictly:
1. Output ONLY the refined question - no explanations or analysis
2. Preserve the original intent completely
3. Add missing technical terms if obvious
4. Keep the question concise - ideally one sentence
5. Focus on searchable technical terms
6. Do not add speculative terms not implied by the original question
Example Input: "How do I use transformers for translation?"
Example Output: "How do I use the Transformers pipeline for machine translation tasks?"
Example Input: "Where is the config stored?"
Example Output: "Where is the configuration file or configuration settings stored in this codebase?"
"""
async def run(self, ctx: GraphRunContext[ChatGraphState, ChatGraphDeps]) -> RetrieveContextNode:
# Create an agent for question polishing
polish_agent = Agent(
create_pydantic_model(
model_provider=ctx.deps.config.llm.model_provider,
model_name=ctx.deps.config.llm.model_name
),
system_prompt=self.system_prompt
)
prompt = f"""Original question: "{ctx.state.original_question}"
Return ONLY the polished question - no explanations or analysis.
Focus on making the question more searchable while preserving its original intent."""
result = await polish_agent.run(prompt)
ctx.state.polished_question = result.data
return RetrieveContextNode()
@dataclass
class RetrieveContextNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
"""Node that retrieves relevant code context using hybrid search: embeddings + reranking"""
async def _get_initial_chunks(
self,
query: str,
embedding_config: EmbeddingConfig,
collection: chromadb.Collection,
n_results: int
) -> tuple[List[str], List[Dict], List[float]]:
"""Get initial chunks using embedding search"""
question_embedding = generate_embedding(
input=query,
config=embedding_config,
input_type=EmbeddingInputType.QUERY
)
results = collection.query(
query_embeddings=question_embedding,
n_results=n_results,
include=['metadatas', 'documents', 'distances']
)
return (
results['documents'][0],
results['metadatas'][0],
results['distances'][0]
)
async def _rerank_chunks(
self,
query: str,
chunks: List[str],
reranker_config: RerankerConfig,
) -> RerankingObject:
"""Rerank chunks using Voyage AI"""
voyage_client = voyageai.Client()
return voyage_client.rerank(
query=query,
documents=chunks,
model=reranker_config.model_name,
top_k=reranker_config.top_k,
truncation=True
)
def _filter_by_distance(
self,
chunks: List[str],
metadatas: List[Dict],
distances: List[float],
threshold: float
) -> tuple[List[str], List[Dict]]:
"""Filter chunks by distance threshold"""
filtered_chunks = []
filtered_metadatas = []
for chunk, meta, dist in zip(chunks, metadatas, distances):
if dist <= threshold:
filtered_chunks.append(chunk)
filtered_metadatas.append(meta)
return filtered_chunks, filtered_metadatas
async def run(self, ctx: GraphRunContext[ChatGraphState, ChatGraphDeps]) -> AnswerQuestionNode:
try:
# Get query
query = ctx.state.polished_question or ctx.state.original_question
# First pass: Get more candidates using embedding search
initial_chunks, initial_metadatas, distances = await self._get_initial_chunks(
query=query,
embedding_config=ctx.deps.config.embedding,
collection=ctx.deps.collection,
n_results=min(ctx.deps.config.chat.max_context_chunks * 2, 50)
)
# Log top k initial results by distance
top_k_initial = sorted(
zip(initial_chunks, distances),
key=lambda x: x[1]
)[:ctx.deps.config.reranker.top_k]
logfire.info('top k embedding search results: {results}', results=top_k_initial)
top_k_initial_chunks = [chunk for chunk, _ in top_k_initial]
# Only proceed to reranking if we have initial results
if not initial_chunks:
LOG.warning("No initial chunks found through embedding search")
raise Exception("No chunks found through embedding search")
# Second pass: Rerank the candidates
try:
if not ctx.deps.config.reranker.enabled:
raise Exception("Reranker is disabled")
# Second pass: Rerank candidates
reranking = await self._rerank_chunks(
query=query,
chunks=initial_chunks,
reranker_config=ctx.deps.config.reranker
)
logfire.info('top k reranking search results: {results}', results=reranking.results)
# Build final context from reranked results
relevant_chunks = []
relevant_metadatas = []
for result in reranking.results:
# Only include if score is good enough
if result.relevance_score >= ctx.deps.config.reranker.relevance_threshold:
relevant_chunks.append(result.document)
# Get corresponding metadata using original index
relevant_metadatas.append(initial_metadatas[result.index])
if not relevant_chunks:
raise Exception("No relevant chunks found through reranking")
except Exception as e:
# Fallback to distance-based filtering if reranking fails
LOG.error(f"Reranking failed, falling back to distance-based filtering: {e}")
relevant_chunks, relevant_metadatas = self._filter_by_distance(
chunks=top_k_initial_chunks,
metadatas=initial_metadatas,
distances=distances,
threshold=ctx.deps.config.chat.similarity_threshold
)
ctx.state.retrieved_context = RetrievedContext(
chunks=relevant_chunks,
metadatas=relevant_metadatas,
)
except Exception as e:
LOG.error(f"Error in context retrieval: {e}")
ctx.state.retrieved_context = RetrievedContext(chunks=[], metadatas=[])
finally:
return AnswerQuestionNode()
@dataclass
class AnswerQuestionNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
"""Node that generates the final answer"""
system_prompt = """
You are an expert code assistant helping developers understand complex codebases. Follow these rules strictly:
1. ALWAYS answer the user's question - this is your primary task
2. Base your answer ONLY on the provided code context, not on general knowledge
3. When referencing code:
- Cite specific files and line numbers
- Quote relevant code snippets briefly
- Explain why this code is relevant to the question
4. If you cannot find sufficient context to answer fully:
- Clearly state what's missing
- Explain what additional information would help
5. Focus on accuracy over comprehensiveness:
- If you're unsure about part of your answer, explicitly say so
- Better to acknowledge limitations than make assumptions
Remember: Your primary goal is answering the user's specific question, not explaining the entire codebase."""
async def run(self, ctx: GraphRunContext[ChatGraphState, ChatGraphDeps]) -> End[ChatResult]:
answer_agent = Agent(
create_pydantic_model(
model_provider=ctx.deps.config.llm.model_provider,
model_name=ctx.deps.config.llm.model_name
),
system_prompt=self.system_prompt
)
if not ctx.state.retrieved_context or not ctx.state.retrieved_context.chunks:
return End(ChatResult(
answer="I couldn't find any relevant code context for your question. "
"Could you please rephrase or be more specific?",
retrieved_context=None,
))
context = ctx.state.retrieved_context
for chunk in context.chunks:
chunk = truncate_chunk(chunk, ctx.deps.config.chat.max_length_per_chunk)
prompt = f"""
Question: {ctx.state.original_question}
Relevant Code Context:
{context.chunks}
Provide a focused answer to the question based on the provided context.
Important: Stay focused on answering the specific question asked.
"""
try:
result = await answer_agent.run(prompt)
return End(ChatResult(
answer=result.data,
retrieved_context=context,
))
except Exception as e:
LOG.error(f"Error generating answer: {e}")
return End(ChatResult(
answer="I encountered an error processing your question. Please try again.",
retrieved_context=context,
))
# Create the graph
chat_graph = Graph(
nodes=[PolishQuestionNode, RetrieveContextNode, AnswerQuestionNode]
)
async def process_chat(
question: str,
collection: chromadb.Collection,
config: AppConfig
) -> ChatResult:
"""
Process a chat question through the graph.
This is the main entry point for chat processing.
"""
state = ChatGraphState(original_question=question)
deps = ChatGraphDeps(collection=collection, config=config)
try:
result, _history = await chat_graph.run(
# Temporary fix to disable PolishQuestionNode
RetrieveContextNode(),
state=state,
deps=deps
)
except Exception as e:
LOG.error(f"Error processing chat in graph: {e}")
console.print_exception()
result = ChatResult(
answer="I encountered an error processing your question. Please try again."
)
finally:
return result
async def stream_chat_progress(
question: str,
collection: chromadb.Collection,
config: AppConfig
) -> AsyncGenerator[StreamingChatResult, None]:
"""
Stream chat progress through the graph.
This is the main entry point for chat processing.
"""
state = ChatGraphState(original_question=question)
deps = ChatGraphDeps(collection=collection, config=config)
# Temporary fix to disable PolishQuestionNode
start_node = RetrieveContextNode()
history: list[HistoryStep[ChatGraphState, ChatResult]] = []
try:
# Initial status
yield StreamingChatResult(
answer="",
status=ChatStatus.STARTING,
progress_message=f"Processing question: {question}"
)
with logfire.span(
'{graph_name} run {start=}',
graph_name='RAG_chat_graph',
start=start_node,
) as run_span:
current_node = start_node
while True:
# Yield current node's status before processing
yield StreamingChatResult.from_node(current_node, state)
try:
# Process the current node
next_node = await chat_graph.next(current_node, history, state=state, deps=deps, infer_name=False)
if isinstance(next_node, End):
result: ChatResult = next_node.data
history.append(EndStep(result=next_node))
run_span.set_attribute('history', history)
# Yield final result
yield StreamingChatResult.complete(result)
return
elif isinstance(next_node, BaseNode):
current_node = next_node
else:
raise ValueError(f"Invalid node type: {type(next_node)}")
except Exception as node_error:
LOG.error(f"Error in node {current_node.__class__.__name__}: {node_error}")
yield StreamingChatResult.error(str(node_error))
return
except Exception as e:
LOG.error(f"Error in stream_chat_progress: {e}")
yield StreamingChatResult.error(str(e))
return
|