minor reranking configuration refactor
Browse files
src/know_lang_bot/chat_bot/chat_graph.py
CHANGED
@@ -220,7 +220,7 @@ class RetrieveContextNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
|
|
220 |
query=query,
|
221 |
embedding_config=ctx.deps.config.embedding,
|
222 |
collection=ctx.deps.collection,
|
223 |
-
n_results=min(ctx.deps.config.chat.max_context_chunks * 2,
|
224 |
)
|
225 |
|
226 |
# Log top k initial results by distance
|
@@ -228,7 +228,7 @@ class RetrieveContextNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
|
|
228 |
zip(initial_chunks, distances),
|
229 |
key=lambda x: x[1]
|
230 |
)[:ctx.deps.config.reranker.top_k]
|
231 |
-
logfire.info('top k
|
232 |
|
233 |
# Only proceed to reranking if we have initial results
|
234 |
if not initial_chunks:
|
@@ -243,7 +243,7 @@ class RetrieveContextNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
|
|
243 |
chunks=initial_chunks,
|
244 |
reranker_config=ctx.deps.config.reranker
|
245 |
)
|
246 |
-
logfire.info('
|
247 |
|
248 |
# Build final context from reranked results
|
249 |
relevant_chunks = []
|
@@ -251,10 +251,13 @@ class RetrieveContextNode(BaseNode[ChatGraphState, ChatGraphDeps, ChatResult]):
|
|
251 |
|
252 |
for result in reranking.results:
|
253 |
# Only include if score is good enough
|
254 |
-
if result.relevance_score >= ctx.deps.config.
|
255 |
relevant_chunks.append(result.document)
|
256 |
# Get corresponding metadata using original index
|
257 |
relevant_metadatas.append(initial_metadatas[result.index])
|
|
|
|
|
|
|
258 |
|
259 |
|
260 |
except Exception as e:
|
|
|
220 |
query=query,
|
221 |
embedding_config=ctx.deps.config.embedding,
|
222 |
collection=ctx.deps.collection,
|
223 |
+
n_results=min(ctx.deps.config.chat.max_context_chunks * 2, 50)
|
224 |
)
|
225 |
|
226 |
# Log top k initial results by distance
|
|
|
228 |
zip(initial_chunks, distances),
|
229 |
key=lambda x: x[1]
|
230 |
)[:ctx.deps.config.reranker.top_k]
|
231 |
+
logfire.info('top k embedding search results: {results}', results=top_k_initial)
|
232 |
|
233 |
# Only proceed to reranking if we have initial results
|
234 |
if not initial_chunks:
|
|
|
243 |
chunks=initial_chunks,
|
244 |
reranker_config=ctx.deps.config.reranker
|
245 |
)
|
246 |
+
logfire.info('top k reranking search results: {results}', results=reranking.results)
|
247 |
|
248 |
# Build final context from reranked results
|
249 |
relevant_chunks = []
|
|
|
251 |
|
252 |
for result in reranking.results:
|
253 |
# Only include if score is good enough
|
254 |
+
if result.relevance_score >= ctx.deps.config.reranker.relevance_threshold:
|
255 |
relevant_chunks.append(result.document)
|
256 |
# Get corresponding metadata using original index
|
257 |
relevant_metadatas.append(initial_metadatas[result.index])
|
258 |
+
|
259 |
+
if not relevant_chunks:
|
260 |
+
raise Exception("No relevant chunks found through reranking")
|
261 |
|
262 |
|
263 |
except Exception as e:
|
src/know_lang_bot/config.py
CHANGED
@@ -157,9 +157,13 @@ class RerankerConfig(BaseSettings):
|
|
157 |
description="API key for the model provider"
|
158 |
)
|
159 |
top_k: int = Field(
|
160 |
-
default=
|
161 |
description="Number of most relevant documents to return from reranking"
|
162 |
)
|
|
|
|
|
|
|
|
|
163 |
|
164 |
@field_validator('api_key', mode='after')
|
165 |
@classmethod
|
|
|
157 |
description="API key for the model provider"
|
158 |
)
|
159 |
top_k: int = Field(
|
160 |
+
default=5,
|
161 |
description="Number of most relevant documents to return from reranking"
|
162 |
)
|
163 |
+
relevance_threshold: float = Field(
|
164 |
+
default=0.5,
|
165 |
+
description="Minimum relevance score to include a document in reranking"
|
166 |
+
)
|
167 |
|
168 |
@field_validator('api_key', mode='after')
|
169 |
@classmethod
|