fullstuckdev
fixing training
93374aa
raw
history blame
9.99 kB
import os
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from typing import List, Optional
from datasets import load_dataset
from transformers import TrainingArguments, Trainer, DataCollatorForLanguageModeling
import json
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Setup cache directory
os.makedirs("/app/cache", exist_ok=True)
os.environ['TRANSFORMERS_CACHE'] = "/app/cache"
# Pydantic models for request/response
class GenerateRequest(BaseModel):
text: str
max_length: Optional[int] = 512
temperature: Optional[float] = 0.7
num_return_sequences: Optional[int] = 1
class GenerateResponse(BaseModel):
generated_text: List[str]
class HealthResponse(BaseModel):
status: str
model_loaded: bool
gpu_available: bool
device: str
class TrainRequest(BaseModel):
dataset_path: str
num_epochs: Optional[int] = 3
batch_size: Optional[int] = 4
learning_rate: Optional[float] = 2e-5
class TrainResponse(BaseModel):
status: str
message: str
# Add training status tracking
class TrainingStatus:
def __init__(self):
self.is_training = False
self.current_epoch = 0
self.current_loss = None
self.status = "idle"
training_status = TrainingStatus()
# Initialize FastAPI app
app = FastAPI(
title="Medical LLaMA API",
description="API for medical text generation using fine-tuned LLaMA model",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for model and tokenizer
model = None
tokenizer = None
@app.get("/", response_model=HealthResponse, tags=["Health"])
async def root():
"""
Root endpoint to check API health and model status
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
return HealthResponse(
status="online",
model_loaded=model is not None,
gpu_available=torch.cuda.is_available(),
device=device
)
@app.post("/generate", response_model=GenerateResponse, tags=["Generation"])
async def generate_text(request: GenerateRequest):
"""
Generate medical text based on input prompt
Parameters:
- text: Input text prompt
- max_length: Maximum length of generated text
- temperature: Sampling temperature (0.0 to 1.0)
- num_return_sequences: Number of sequences to generate
Returns:
- List of generated text sequences
"""
try:
if model is None or tokenizer is None:
raise HTTPException(status_code=500, detail="Model not loaded")
inputs = tokenizer(
request.text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=request.max_length
).to(model.device)
with torch.no_grad():
generated_ids = model.generate(
inputs.input_ids,
max_length=request.max_length,
num_return_sequences=request.num_return_sequences,
temperature=request.temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
generated_texts = [
tokenizer.decode(g, skip_special_tokens=True)
for g in generated_ids
]
return GenerateResponse(generated_text=generated_texts)
except Exception as e:
logger.error(f"Generation error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", tags=["Health"])
async def health_check():
"""
Check the health status of the API and model
"""
return {
"status": "healthy",
"model_loaded": model is not None,
"gpu_available": torch.cuda.is_available(),
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
@app.on_event("startup")
async def startup_event():
logger.info("Starting up application...")
try:
global tokenizer, model
tokenizer, model = init_model()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
@app.post("/train", response_model=TrainResponse, tags=["Training"])
async def train_model(request: TrainRequest, background_tasks: BackgroundTasks):
"""
Start model training with the specified dataset
Parameters:
- dataset_path: Path to the JSON dataset file
- num_epochs: Number of training epochs
- batch_size: Training batch size
- learning_rate: Learning rate for training
"""
if training_status.is_training:
raise HTTPException(status_code=400, detail="Training is already in progress")
try:
# Verify dataset exists
if not os.path.exists(request.dataset_path):
raise HTTPException(status_code=404, detail="Dataset file not found")
# Start training in background
background_tasks.add_task(
run_training,
request.dataset_path,
request.num_epochs,
request.batch_size,
request.learning_rate
)
return TrainResponse(
status="started",
message="Training started in background"
)
except Exception as e:
logger.error(f"Training setup error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/train/status", tags=["Training"])
async def get_training_status():
"""
Get current training status
"""
return {
"is_training": training_status.is_training,
"current_epoch": training_status.current_epoch,
"current_loss": training_status.current_loss,
"status": training_status.status
}
# Add training function
async def run_training(dataset_path: str, num_epochs: int, batch_size: int, learning_rate: float):
global model, tokenizer, training_status
try:
training_status.is_training = True
training_status.status = "loading_dataset"
# Load dataset
dataset = load_dataset("json", data_files=dataset_path)
training_status.status = "preprocessing"
# Preprocess function
def preprocess_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512
)
# Tokenize dataset
tokenized_dataset = dataset.map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names
)
training_status.status = "training"
# Training arguments
training_args = TrainingArguments(
output_dir=f"{model_output_path}/checkpoints",
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=4,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
save_steps=500,
logging_steps=100,
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
data_collator=DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
),
)
# Training callback to update status
class TrainingCallback(trainer.callback_handler):
def on_epoch_begin(self, args, state, control, **kwargs):
training_status.current_epoch = state.epoch
def on_log(self, args, state, control, logs=None, **kwargs):
if logs:
training_status.current_loss = logs.get("loss", None)
trainer.add_callback(TrainingCallback)
# Start training
trainer.train()
# Save the model
training_status.status = "saving"
model.save_pretrained(model_output_path)
tokenizer.save_pretrained(model_output_path)
training_status.status = "completed"
logger.info("Training completed successfully")
except Exception as e:
training_status.status = f"failed: {str(e)}"
logger.error(f"Training error: {str(e)}")
raise
finally:
training_status.is_training = False
# Update model initialization
def init_model():
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Loading model on device: {device}")
# Try to load fine-tuned model if it exists
if os.path.exists(model_output_path):
tokenizer = AutoTokenizer.from_pretrained(model_output_path)
model = AutoModelForCausalLM.from_pretrained(
model_output_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto"
)
else:
# Load base model if no fine-tuned model exists
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto"
)
return tokenizer, model
except Exception as e:
logger.error(f"Model initialization error: {str(e)}")
raise