File size: 9,986 Bytes
8c2f469
 
e7ceaff
f6b6cd4
8c2f469
e7ceaff
 
f6b6cd4
93374aa
 
 
8c2f469
e7ceaff
 
 
8c2f469
e7ceaff
 
 
8c2f469
f6b6cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93374aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b6cd4
 
 
 
 
 
 
 
8c2f469
e7ceaff
 
 
 
 
 
 
 
8c2f469
f6b6cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2f469
f6b6cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2f469
f6b6cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2f469
f6b6cd4
 
8c2f469
f6b6cd4
 
 
 
 
 
 
 
 
 
 
8c2f469
e7ceaff
 
 
 
 
 
 
 
93374aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from typing import List, Optional
from datasets import load_dataset
from transformers import TrainingArguments, Trainer, DataCollatorForLanguageModeling
import json

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Setup cache directory
os.makedirs("/app/cache", exist_ok=True)
os.environ['TRANSFORMERS_CACHE'] = "/app/cache"

# Pydantic models for request/response
class GenerateRequest(BaseModel):
    text: str
    max_length: Optional[int] = 512
    temperature: Optional[float] = 0.7
    num_return_sequences: Optional[int] = 1

class GenerateResponse(BaseModel):
    generated_text: List[str]

class HealthResponse(BaseModel):
    status: str
    model_loaded: bool
    gpu_available: bool
    device: str

class TrainRequest(BaseModel):
    dataset_path: str
    num_epochs: Optional[int] = 3
    batch_size: Optional[int] = 4
    learning_rate: Optional[float] = 2e-5

class TrainResponse(BaseModel):
    status: str
    message: str

# Add training status tracking
class TrainingStatus:
    def __init__(self):
        self.is_training = False
        self.current_epoch = 0
        self.current_loss = None
        self.status = "idle"

training_status = TrainingStatus()

# Initialize FastAPI app
app = FastAPI(
    title="Medical LLaMA API",
    description="API for medical text generation using fine-tuned LLaMA model",
    version="1.0.0",
    docs_url="/docs",
    redoc_url="/redoc"
)

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global variables for model and tokenizer
model = None
tokenizer = None

@app.get("/", response_model=HealthResponse, tags=["Health"])
async def root():
    """
    Root endpoint to check API health and model status
    """
    device = "cuda" if torch.cuda.is_available() else "cpu"
    return HealthResponse(
        status="online",
        model_loaded=model is not None,
        gpu_available=torch.cuda.is_available(),
        device=device
    )

@app.post("/generate", response_model=GenerateResponse, tags=["Generation"])
async def generate_text(request: GenerateRequest):
    """
    Generate medical text based on input prompt
    
    Parameters:
    - text: Input text prompt
    - max_length: Maximum length of generated text
    - temperature: Sampling temperature (0.0 to 1.0)
    - num_return_sequences: Number of sequences to generate
    
    Returns:
    - List of generated text sequences
    """
    try:
        if model is None or tokenizer is None:
            raise HTTPException(status_code=500, detail="Model not loaded")

        inputs = tokenizer(
            request.text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=request.max_length
        ).to(model.device)

        with torch.no_grad():
            generated_ids = model.generate(
                inputs.input_ids,
                max_length=request.max_length,
                num_return_sequences=request.num_return_sequences,
                temperature=request.temperature,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
            )

        generated_texts = [
            tokenizer.decode(g, skip_special_tokens=True)
            for g in generated_ids
        ]

        return GenerateResponse(generated_text=generated_texts)

    except Exception as e:
        logger.error(f"Generation error: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health", tags=["Health"])
async def health_check():
    """
    Check the health status of the API and model
    """
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "gpu_available": torch.cuda.is_available(),
        "device": "cuda" if torch.cuda.is_available() else "cpu"
    }

@app.on_event("startup")
async def startup_event():
    logger.info("Starting up application...")
    try:
        global tokenizer, model
        tokenizer, model = init_model()
        logger.info("Model loaded successfully")
    except Exception as e:
        logger.error(f"Failed to load model: {str(e)}")

@app.post("/train", response_model=TrainResponse, tags=["Training"])
async def train_model(request: TrainRequest, background_tasks: BackgroundTasks):
    """
    Start model training with the specified dataset
    
    Parameters:
    - dataset_path: Path to the JSON dataset file
    - num_epochs: Number of training epochs
    - batch_size: Training batch size
    - learning_rate: Learning rate for training
    """
    if training_status.is_training:
        raise HTTPException(status_code=400, detail="Training is already in progress")
    
    try:
        # Verify dataset exists
        if not os.path.exists(request.dataset_path):
            raise HTTPException(status_code=404, detail="Dataset file not found")
        
        # Start training in background
        background_tasks.add_task(
            run_training,
            request.dataset_path,
            request.num_epochs,
            request.batch_size,
            request.learning_rate
        )
        
        return TrainResponse(
            status="started",
            message="Training started in background"
        )
        
    except Exception as e:
        logger.error(f"Training setup error: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/train/status", tags=["Training"])
async def get_training_status():
    """
    Get current training status
    """
    return {
        "is_training": training_status.is_training,
        "current_epoch": training_status.current_epoch,
        "current_loss": training_status.current_loss,
        "status": training_status.status
    }

# Add training function
async def run_training(dataset_path: str, num_epochs: int, batch_size: int, learning_rate: float):
    global model, tokenizer, training_status
    
    try:
        training_status.is_training = True
        training_status.status = "loading_dataset"
        
        # Load dataset
        dataset = load_dataset("json", data_files=dataset_path)
        
        training_status.status = "preprocessing"
        
        # Preprocess function
        def preprocess_function(examples):
            return tokenizer(
                examples["text"],
                truncation=True,
                padding="max_length",
                max_length=512
            )
        
        # Tokenize dataset
        tokenized_dataset = dataset.map(
            preprocess_function,
            batched=True,
            remove_columns=dataset["train"].column_names
        )
        
        training_status.status = "training"
        
        # Training arguments
        training_args = TrainingArguments(
            output_dir=f"{model_output_path}/checkpoints",
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=4,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            fp16=True,
            save_steps=500,
            logging_steps=100,
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=tokenized_dataset["train"],
            data_collator=DataCollatorForLanguageModeling(
                tokenizer=tokenizer,
                mlm=False
            ),
        )
        
        # Training callback to update status
        class TrainingCallback(trainer.callback_handler):
            def on_epoch_begin(self, args, state, control, **kwargs):
                training_status.current_epoch = state.epoch
            
            def on_log(self, args, state, control, logs=None, **kwargs):
                if logs:
                    training_status.current_loss = logs.get("loss", None)
        
        trainer.add_callback(TrainingCallback)
        
        # Start training
        trainer.train()
        
        # Save the model
        training_status.status = "saving"
        model.save_pretrained(model_output_path)
        tokenizer.save_pretrained(model_output_path)
        
        training_status.status = "completed"
        logger.info("Training completed successfully")
        
    except Exception as e:
        training_status.status = f"failed: {str(e)}"
        logger.error(f"Training error: {str(e)}")
        raise
    
    finally:
        training_status.is_training = False

# Update model initialization
def init_model():
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"Loading model on device: {device}")
        
        # Try to load fine-tuned model if it exists
        if os.path.exists(model_output_path):
            tokenizer = AutoTokenizer.from_pretrained(model_output_path)
            model = AutoModelForCausalLM.from_pretrained(
                model_output_path,
                torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                device_map="auto"
            )
        else:
            # Load base model if no fine-tuned model exists
            model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                device_map="auto"
            )
        
        return tokenizer, model
    except Exception as e:
        logger.error(f"Model initialization error: {str(e)}")
        raise