File size: 6,409 Bytes
75ae599
 
 
f494b68
12a86ab
 
 
 
 
 
c6b4946
 
f494b68
12a86ab
 
f494b68
cabae73
 
 
8e50f32
6ff5d91
12a86ab
03486e0
75ae599
 
12a86ab
 
 
 
 
8e50f32
 
6ff5d91
8e50f32
cabae73
6ff5d91
 
 
 
c6b4946
8e50f32
 
 
 
12a86ab
 
 
 
6ff5d91
 
 
 
819753a
 
6ff5d91
 
 
 
c6b4946
6ff5d91
8e50f32
6ff5d91
8e50f32
 
6ff5d91
 
8e50f32
 
6ff5d91
 
8e50f32
 
 
c6b4946
819753a
 
6ff5d91
819753a
 
 
 
 
 
 
 
 
 
 
 
 
6ff5d91
819753a
c6b4946
8e50f32
6ff5d91
8e50f32
6ff5d91
819753a
6ff5d91
 
 
 
 
 
 
 
c6b4946
12a86ab
 
 
 
cabae73
 
 
 
12a86ab
11dec21
6ff5d91
11dec21
6ff5d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11dec21
6ff5d91
11dec21
 
6ff5d91
 
 
 
 
8e50f32
 
 
6ff5d91
c6b4946
6ff5d91
 
c6b4946
11dec21
8e50f32
6ff5d91
cabae73
 
 
11dec21
 
 
 
cabae73
 
11dec21
 
6ff5d91
11dec21
 
12a86ab
 
 
11dec21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Force TensorFlow to use CPU

import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle

# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")

# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]

# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, address, parent_name, allergies, cause, xray):
    image_size = (224, 224)

    def predict_fracture(xray_path):
        img = Image.open(xray_path).resize(image_size)
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)[0][0]
        return prediction

    # Predict fracture
    prediction = predict_fracture(xray)
    diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
    severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"

    # Hospital details
    hospital_name = "City Care Hospital"
    hospital_address = "123 Health Street, MedCity, India"
    doctor_name = "Dr. Anil Sharma (Orthopedic Specialist)"

    # Save X-ray image for report
    img = Image.open(xray).resize((300, 300))
    img_path = f"{name}_xray.png"
    img.save(img_path)

    # Generate PDF report
    report_path = f"{name}_fracture_report.pdf"
    c = canvas.Canvas(report_path, pagesize=letter)

    # Set page margins
    c.translate(20, 20)

    # Report title
    c.setFont("Helvetica-Bold", 16)
    c.drawString(180, 750, hospital_name)
    c.setFont("Helvetica", 12)
    c.drawString(140, 735, hospital_address)
    c.drawString(180, 720, f"Attending Doctor: {doctor_name}")

    # Patient details
    patient_data = [
        ["Patient Name", name[:50]],
        ["Age", age],
        ["Gender", gender],
        ["Parent's Name", parent_name[:50]],
        ["Address", address[:70]],
        ["Weight", f"{weight} kg"],
        ["Height", f"{height} cm"],
        ["Allergies", allergies[:50] if allergies else "None"],
        ["Cause of Injury", cause[:50] if cause else "Not Provided"],
        ["Diagnosis", diagnosed_class],
        ["Injury Severity", severity]
    ]

    # Format and align tables
    def format_table(data):
        table = Table(data, colWidths=[200, 350])
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
            ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
            ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
            ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
            ('BOTTOMPADDING', (0, 0), (-1, 0), 12),
            ('GRID', (0, 0), (-1, -1), 1, colors.black),
            ('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
        ]))
        return table

    # Draw patient details table
    patient_table = format_table(patient_data)
    patient_table.wrapOn(c, 450, 500)
    patient_table.drawOn(c, 50, 620)

    # Load and insert X-ray image
    c.drawInlineImage(img_path, 50, 350, width=250, height=250)
    c.setFont("Helvetica-Bold", 12)
    c.drawString(120, 320, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")

    # Injury details
    c.setFont("Helvetica-Bold", 14)
    c.drawString(50, 270, "Injury Details and Treatment Recommendations")
    c.setFont("Helvetica", 12)
    c.drawString(50, 250, "• Immobilization and pain management")
    c.drawString(50, 235, "• Follow-up X-rays required")
    c.drawString(50, 220, "• Surgical intervention if needed")
    c.drawString(50, 205, "• Physiotherapy for recovery")

    c.save()

    return report_path  # Return path for auto-download

# Function to select a sample image
def use_sample_image(sample_image_path):
    return sample_image_path  # Returns selected sample image filepath

# Define Gradio Interface
with gr.Blocks() as app:
    gr.Markdown("## **Bone Fracture Detection System**")
    
    # Informative Blog Section
    with gr.Accordion("Bone Fractures - Symptoms, Causes, & Treatment", open=True):
        gr.Markdown("""
        **A fracture** is a break or crack in a bone caused by excessive force.  
        **Common Causes:**  
        - Traumatic injuries (sports, accidents, falls)  
        - Osteoporosis or cancer (weakened bones)  

        **Symptoms:**  
        - Severe pain, swelling, bruising  
        - Deformity or inability to use the limb  

        **Diagnosis:**  
        - X-rays, CT scans, MRI scans  

        **Treatment:**  
        - Plaster casts, splints, surgery if needed  
        - Pain management and physiotherapy  

        **First Aid:**  
        - Immobilize the area  
        - Apply a cold pack  
        - Seek medical help immediately  
        """)

    # Patient Details Form
    with gr.Row():
        name = gr.Textbox(label="Patient Name", max_length=50)
        age = gr.Number(label="Age")
        gender = gr.Radio(["Male", "Female", "Other"], label="Gender")

    with gr.Row():
        parent_name = gr.Textbox(label="Parent's Name", max_length=50)
        address = gr.Textbox(label="Address", max_length=70)

    with gr.Row():
        weight = gr.Number(label="Weight (kg)")
        height = gr.Number(label="Height (cm)")

    with gr.Row():
        allergies = gr.Textbox(label="Allergies (if any, max 50 chars)", max_length=50)
        cause = gr.Textbox(label="Cause of Injury (max 50 chars)", max_length=50)

    with gr.Row():
        xray = gr.Image(type="filepath", label="Upload X-ray Image")

    with gr.Row():
        sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
        select_button = gr.Button("Load Sample Image")

    submit_button = gr.Button("Generate Report")
    output_file = gr.File(label="Download Report")

    select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])

    submit_button.click(
        generate_report,
        inputs=[name, age, gender, weight, height, address, parent_name, allergies, cause, xray],
        outputs=[output_file],
    )

# Launch the Gradio app
if __name__ == "__main__":
    app.launch()