Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,8 @@ from tensorflow.keras.preprocessing import image
|
|
| 8 |
from PIL import Image
|
| 9 |
from reportlab.lib.pagesizes import letter
|
| 10 |
from reportlab.pdfgen import canvas
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Load the trained model
|
| 13 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
|
@@ -17,7 +19,7 @@ with open("templates/re.html", "r", encoding="utf-8") as file:
|
|
| 17 |
html_content = file.read()
|
| 18 |
|
| 19 |
# Function to process X-rays and generate a PDF report
|
| 20 |
-
def generate_report(name, age, gender, xray1, xray2):
|
| 21 |
image_size = (224, 224)
|
| 22 |
|
| 23 |
def predict_fracture(xray_path):
|
|
@@ -35,26 +37,68 @@ def generate_report(name, age, gender, xray1, xray2):
|
|
| 35 |
|
| 36 |
# Injury severity classification
|
| 37 |
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
|
| 38 |
-
|
| 39 |
-
"Mild": "
|
| 40 |
-
"Moderate": "
|
| 41 |
-
"Severe": "
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Generate PDF report
|
| 47 |
report_path = f"{name}_fracture_report.pdf"
|
| 48 |
c = canvas.Canvas(report_path, pagesize=letter)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
c.setFont("Helvetica", 12)
|
| 50 |
-
c.drawString(100,
|
| 51 |
-
c.drawString(100,
|
| 52 |
-
c.drawString(100,
|
| 53 |
-
c.drawString(100,
|
| 54 |
-
c.drawString(100,
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
c.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
c.save()
|
| 59 |
|
| 60 |
return report_path # Return path for auto-download
|
|
@@ -69,6 +113,10 @@ with gr.Blocks() as app:
|
|
| 69 |
age = gr.Number(label="Age")
|
| 70 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
with gr.Row():
|
| 73 |
xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1")
|
| 74 |
xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2")
|
|
@@ -78,7 +126,7 @@ with gr.Blocks() as app:
|
|
| 78 |
|
| 79 |
submit_button.click(
|
| 80 |
generate_report,
|
| 81 |
-
inputs=[name, age, gender, xray1, xray2],
|
| 82 |
outputs=[output_file],
|
| 83 |
)
|
| 84 |
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
from reportlab.lib.pagesizes import letter
|
| 10 |
from reportlab.pdfgen import canvas
|
| 11 |
+
from reportlab.lib import colors
|
| 12 |
+
from reportlab.platypus import Table, TableStyle
|
| 13 |
|
| 14 |
# Load the trained model
|
| 15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
|
|
|
| 19 |
html_content = file.read()
|
| 20 |
|
| 21 |
# Function to process X-rays and generate a PDF report
|
| 22 |
+
def generate_report(name, age, gender, allergies, cause, xray1, xray2):
|
| 23 |
image_size = (224, 224)
|
| 24 |
|
| 25 |
def predict_fracture(xray_path):
|
|
|
|
| 37 |
|
| 38 |
# Injury severity classification
|
| 39 |
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
|
| 40 |
+
treatment_details = {
|
| 41 |
+
"Mild": "Your fracture is classified as **Mild**. It may heal with rest, pain relievers, and a follow-up X-ray. Avoid excessive movement of the affected area.",
|
| 42 |
+
"Moderate": "Your fracture is classified as **Moderate**. You may require a plaster cast, splint, or minor surgery. Recovery takes **4-8 weeks**.",
|
| 43 |
+
"Severe": "Your fracture is classified as **Severe**. Surgery with metal implants and extensive physiotherapy is required. Recovery takes **several months** with proper rehabilitation."
|
| 44 |
+
}
|
| 45 |
+
treatment = treatment_details[severity]
|
| 46 |
+
|
| 47 |
+
# Estimated cost & duration
|
| 48 |
+
cost_duration_data = [
|
| 49 |
+
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
| 50 |
+
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
| 51 |
+
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
# Save X-ray images for report
|
| 55 |
+
img1 = Image.open(xray1).resize((300, 300))
|
| 56 |
+
img2 = Image.open(xray2).resize((300, 300))
|
| 57 |
+
img1_path = f"{name}_xray1.png"
|
| 58 |
+
img2_path = f"{name}_xray2.png"
|
| 59 |
+
img1.save(img1_path)
|
| 60 |
+
img2.save(img2_path)
|
| 61 |
|
| 62 |
# Generate PDF report
|
| 63 |
report_path = f"{name}_fracture_report.pdf"
|
| 64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
| 65 |
+
c.setFont("Helvetica-Bold", 14)
|
| 66 |
+
c.drawString(200, 770, "Bone Fracture Detection Report")
|
| 67 |
+
|
| 68 |
+
# Patient details
|
| 69 |
c.setFont("Helvetica", 12)
|
| 70 |
+
c.drawString(100, 740, f"Patient Name: {name}")
|
| 71 |
+
c.drawString(100, 720, f"Age: {age}")
|
| 72 |
+
c.drawString(100, 700, f"Gender: {gender}")
|
| 73 |
+
c.drawString(100, 680, f"Allergies: {allergies if allergies else 'None'}")
|
| 74 |
+
c.drawString(100, 660, f"Cause of Injury: {cause if cause else 'Not Provided'}")
|
| 75 |
+
|
| 76 |
+
# Diagnosis
|
| 77 |
+
c.setFont("Helvetica-Bold", 12)
|
| 78 |
+
c.drawString(100, 630, "Diagnosis & Treatment Plan:")
|
| 79 |
+
c.setFont("Helvetica", 11)
|
| 80 |
+
c.drawString(100, 610, f"Fracture Detected: {diagnosed_class}")
|
| 81 |
+
c.drawString(100, 590, f"Injury Severity: {severity}")
|
| 82 |
+
c.setFont("Helvetica", 10)
|
| 83 |
+
c.drawString(100, 570, f"{treatment}")
|
| 84 |
+
|
| 85 |
+
# Load and insert X-ray images
|
| 86 |
+
c.drawInlineImage(img1_path, 50, 250, width=250, height=250)
|
| 87 |
+
c.drawInlineImage(img2_path, 320, 250, width=250, height=250)
|
| 88 |
+
|
| 89 |
+
# Cost estimation table
|
| 90 |
+
table = Table(cost_duration_data)
|
| 91 |
+
table.setStyle(TableStyle([
|
| 92 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
|
| 93 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
| 94 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
| 95 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
| 96 |
+
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
|
| 97 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black)
|
| 98 |
+
]))
|
| 99 |
+
table.wrapOn(c, 400, 300)
|
| 100 |
+
table.drawOn(c, 100, 150)
|
| 101 |
+
|
| 102 |
c.save()
|
| 103 |
|
| 104 |
return report_path # Return path for auto-download
|
|
|
|
| 113 |
age = gr.Number(label="Age")
|
| 114 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
| 115 |
|
| 116 |
+
with gr.Row():
|
| 117 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
| 118 |
+
cause = gr.Textbox(label="Cause of Injury")
|
| 119 |
+
|
| 120 |
with gr.Row():
|
| 121 |
xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1")
|
| 122 |
xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2")
|
|
|
|
| 126 |
|
| 127 |
submit_button.click(
|
| 128 |
generate_report,
|
| 129 |
+
inputs=[name, age, gender, allergies, cause, xray1, xray2],
|
| 130 |
outputs=[output_file],
|
| 131 |
)
|
| 132 |
|