TheoLvs's picture
Update tasks/text.py
387cbb4 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import tensorflow as tf
from huggingface_hub import hf_hub_download
from transformers import TFElectraForSequenceClassification, ElectraTokenizer, ElectraConfig
import numpy as np
router = APIRouter()
DESCRIPTION = "Electra_Base"
ROUTE = "/text"
# # Load model and tokenizer
# model_weights_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="tf_model.h5")
# model_config_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="config.json")
model_repo = "jennasparks/electra_tf"
config = ElectraConfig.from_pretrained(model_repo)
model = TFElectraForSequenceClassification.from_pretrained(model_repo)
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Electra
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
#make predictions
predictions = []
for i in range(len(test_dataset["quote"])):
encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf")
outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False)
predictions.append(tf.argmax(outputs.logits, axis=1))
# Get true labels
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results