File size: 3,958 Bytes
4d6e8c2
 
 
 
 
387cbb4
4d6e8c2
 
 
 
fe9b87b
bb9daa0
58ef950
4f2a519
4827d61
 
4d6e8c2
 
996c86a
1c33274
70f5f26
d0e440d
 
 
54b86de
660641a
6e88853
 
fc31f61
54b86de
19efa32
1c33274
fa0927e
 
 
 
 
4f2a519
4d6e8c2
 
 
 
fa0927e
 
 
 
 
 
 
 
 
 
 
 
 
b5db70a
fa0927e
4f2a519
 
4827d61
54b86de
 
fa0927e
 
 
 
 
40cb222
 
 
70f5f26
bb9daa0
f663404
 
 
 
 
 
 
54b86de
f663404
 
70f5f26
 
 
 
9382104
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
40cb222
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

import tensorflow as tf
from huggingface_hub import hf_hub_download

from transformers import TFElectraForSequenceClassification, ElectraTokenizer, ElectraConfig
import numpy as np

router = APIRouter()

DESCRIPTION = "Electra_Base"
ROUTE = "/text"

# # Load model and tokenizer
# model_weights_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="tf_model.h5")
# model_config_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="config.json")

model_repo = "jennasparks/electra_tf"
config = ElectraConfig.from_pretrained(model_repo)
model = TFElectraForSequenceClassification.from_pretrained(model_repo)
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")


@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Electra
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   

    #make predictions
    predictions = []
    
    for i in range(len(test_dataset["quote"])):
      encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf")
      outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False)
      predictions.append(tf.argmax(outputs.logits, axis=1))
        
    # Get true labels
    true_labels = test_dataset["label"]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results