File size: 3,958 Bytes
4d6e8c2 387cbb4 4d6e8c2 fe9b87b bb9daa0 58ef950 4f2a519 4827d61 4d6e8c2 996c86a 1c33274 70f5f26 d0e440d 54b86de 660641a 6e88853 fc31f61 54b86de 19efa32 1c33274 fa0927e 4f2a519 4d6e8c2 fa0927e b5db70a fa0927e 4f2a519 4827d61 54b86de fa0927e 40cb222 70f5f26 bb9daa0 f663404 54b86de f663404 70f5f26 9382104 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 40cb222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import tensorflow as tf
from huggingface_hub import hf_hub_download
from transformers import TFElectraForSequenceClassification, ElectraTokenizer, ElectraConfig
import numpy as np
router = APIRouter()
DESCRIPTION = "Electra_Base"
ROUTE = "/text"
# # Load model and tokenizer
# model_weights_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="tf_model.h5")
# model_config_path = hf_hub_download(repo_id="jennasparks/electra-tf", filename="config.json")
model_repo = "jennasparks/electra_tf"
config = ElectraConfig.from_pretrained(model_repo)
model = TFElectraForSequenceClassification.from_pretrained(model_repo)
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Electra
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
#make predictions
predictions = []
for i in range(len(test_dataset["quote"])):
encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf")
outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False)
predictions.append(tf.argmax(outputs.logits, axis=1))
# Get true labels
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |