jennasparks commited on
Commit
fa0927e
·
verified ·
1 Parent(s): 97d8298

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +34 -3
tasks/text.py CHANGED
@@ -16,10 +16,16 @@ DESCRIPTION = "electra fine tune"
16
  ROUTE = "/text"
17
 
18
  @router.post(ROUTE, tags=["Text Task"],
19
- """""
20
- - Makes random predictions from the label space (0-7)
 
 
 
 
 
21
  - Used as a baseline for comparison
22
  """
 
23
  # Download from Google Drive
24
  import gdown
25
 
@@ -32,6 +38,32 @@ ROUTE = "/text"
32
  # Get space info
33
  username, space_url = get_space_info()
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  #--------------------------------------------------------------------------------------------
36
 
37
  # Make random predictions (placeholder for actual model inference)
@@ -44,7 +76,6 @@ ROUTE = "/text"
44
  # Get true labels
45
  true_labels = test_dataset["label"]
46
 
47
-
48
  #--------------------------------------------------------------------------------------------
49
  # YOUR MODEL INFERENCE STOPS HERE
50
  #--------------------------------------------------------------------------------------------
 
16
  ROUTE = "/text"
17
 
18
  @router.post(ROUTE, tags=["Text Task"],
19
+ description=DESCRIPTION)
20
+
21
+ async def evaluate_text(request: TextEvaluationRequest):
22
+ """
23
+ Evaluate text classification for climate disinformation detection.
24
+
25
+ Current Model: Electra
26
  - Used as a baseline for comparison
27
  """
28
+
29
  # Download from Google Drive
30
  import gdown
31
 
 
38
  # Get space info
39
  username, space_url = get_space_info()
40
 
41
+ # Define the label mapping
42
+ LABEL_MAPPING = {
43
+ "0_not_relevant": 0,
44
+ "1_not_happening": 1,
45
+ "2_not_human": 2,
46
+ "3_not_bad": 3,
47
+ "4_solutions_harmful_unnecessary": 4,
48
+ "5_science_unreliable": 5,
49
+ "6_proponents_biased": 6,
50
+ "7_fossil_fuels_needed": 7
51
+ }
52
+
53
+ # Load and prepare the dataset
54
+ dataset = load_dataset(request.dataset_name)
55
+
56
+ # Convert string labels to integers
57
+ dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
58
+
59
+ # Split dataset
60
+ train_test = dataset["train"]
61
+ test_dataset = dataset["test"]
62
+
63
+ # Start tracking emissions
64
+ tracker.start()
65
+ tracker.start_task("inference")
66
+
67
  #--------------------------------------------------------------------------------------------
68
 
69
  # Make random predictions (placeholder for actual model inference)
 
76
  # Get true labels
77
  true_labels = test_dataset["label"]
78
 
 
79
  #--------------------------------------------------------------------------------------------
80
  # YOUR MODEL INFERENCE STOPS HERE
81
  #--------------------------------------------------------------------------------------------