|
from fastapi import APIRouter |
|
from datetime import datetime |
|
import os |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import random |
|
|
|
from .utils.evaluation import TextEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Random Baseline" |
|
ROUTE = "/text" |
|
|
|
@router.post(ROUTE, tags=["Text Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_text(request: TextEvaluationRequest): |
|
""" |
|
Evaluate text classification for climate disinformation detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-7) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"0_not_relevant": 0, |
|
"1_not_happening": 1, |
|
"2_not_human": 2, |
|
"3_not_bad": 3, |
|
"4_solutions_harmful_unnecessary": 4, |
|
"5_science_unreliable": 5, |
|
"6_proponents_biased": 6, |
|
"7_fossil_fuels_needed": 7 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) |
|
|
|
|
|
test_dataset = dataset["test"] |
|
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import torch |
|
from torch.utils.data import DataLoader, TensorDataset |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True) |
|
MAX_LENGTH = 365 |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO) |
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt") |
|
test_labels = torch.tensor(test_dataset["label"]) |
|
|
|
test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels) |
|
test_loader = DataLoader(test_dataset_0, batch_size=16) |
|
print('encoded') |
|
|
|
predictions = [] |
|
with torch.no_grad(): |
|
for batch in test_loader: |
|
input_ids, attention_mask, labels = [x.to(device) for x in batch] |
|
outputs = model(input_ids, attention_mask=attention_mask) |
|
preds = torch.argmax(outputs.logits, dim=1) |
|
predictions.extend(preds.cpu().numpy()) |
|
print('here is a batch') |
|
|
|
true_labels = test_dataset["label"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |