from fastapi import APIRouter from datetime import datetime import os from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset test_dataset = dataset["test"] from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch from torch.utils.data import DataLoader, TensorDataset device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load model and tokenizer from Hugging Face Hub MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass" tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True) MAX_LENGTH = 365 model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO) model.to(device) model.eval() # Set to evaluation mode # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) #true_labels = test_dataset["label"] #predictions = [random.randint(0, 7) for _ in range(len(true_labels))] # tokenize texts test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt") test_labels = torch.tensor(test_dataset["label"]) test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels) test_loader = DataLoader(test_dataset_0, batch_size=16) print('encoded') predictions = [] with torch.no_grad(): for batch in test_loader: input_ids, attention_mask, labels = [x.to(device) for x in batch] outputs = model(input_ids, attention_mask=attention_mask) preds = torch.argmax(outputs.logits, dim=1) predictions.extend(preds.cpu().numpy()) print('here is a batch') true_labels = test_dataset["label"] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results