File size: 2,828 Bytes
7985f98
0b8cb49
 
304180d
0b8cb49
304180d
0b8cb49
304180d
 
 
 
 
7985f98
0b8cb49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7985f98
0b8cb49
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from gradio_webrtc import WebRTC, AdditionalOutputs, ReplyOnPause
from pydub import AudioSegment
from io import BytesIO
import numpy as np
import librosa
import tempfile
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")


def transcribe(audio: tuple[int, np.ndarray], transformers_convo: list[dict], gradio_convo: list[dict]):
    segment = AudioSegment(
        audio[1].tobytes(),
        frame_rate=audio[0],
        sample_width=audio[1].dtype.itemsize,
        channels=1,
    )

    with tempfile.NamedTemporaryFile(suffix=".mp3") as temp_audio:
        segment.export(temp_audio.name, format="mp3")
        transformers_convo.append({"role": "user", "content": [{"type": "audio", "audio_url": temp_audio.name}]})
        gradio_convo.append({"role": "assistant", "content": gr.Audio(value=temp_audio.name)})
        text = processor.apply_chat_template(transformers_convo, add_generation_prompt=True, tokenize=False)
        audios = []
        for message in transformers_convo:
            if isinstance(message["content"], list):
                for ele in message["content"]:
                    if ele["type"] == "audio":
                        audios.append(librosa.load(
                            BytesIO(open(ele['audio_url'], "rb").read()), 
                            sr=processor.feature_extractor.sampling_rate)[0]
                        )
        inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
        inputs.input_ids = inputs.input_ids.to("cuda")

        generate_ids = model.generate(**inputs, max_length=256)
        generate_ids = generate_ids[:, inputs.input_ids.size(1):]
        response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        print("response", response)
        transformers_convo.append({"role": "assistant", "content": response})
        gradio_convo.append({"role": "assistant", "content": response})

        yield AdditionalOutputs(transformers_convo, gradio_convo)


with gr.Blocks() as demo:
    transformers_convo = gr.State()
    with gr.Row():
        with gr.Column():
            audio = WebRTC(
                label="Stream",
                mode="send",
                modality="audio",
            )
        with gr.Column():
            transcript = gr.Chatbot(label="transcript", type="messages")

    audio.stream(ReplyOnPause(transcribe), inputs=[audio, transformers_convo, transcript], outputs=[audio])
    audio.on_additional_outputs(lambda s: s, outputs=[transformers_convo, transcript])

if __name__ == "__main__":
    demo.launch()