Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
0b8cb49
1
Parent(s):
304180d
first try
Browse files
app.py
CHANGED
@@ -1,17 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_webrtc import WebRTC, AdditionalOutputs
|
3 |
-
|
4 |
from io import BytesIO
|
5 |
-
|
6 |
import librosa
|
|
|
7 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
8 |
|
9 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
|
10 |
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
|
11 |
|
12 |
|
13 |
-
def
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_webrtc import WebRTC, AdditionalOutputs, ReplyOnPause
|
3 |
+
from pydub import AudioSegment
|
4 |
from io import BytesIO
|
5 |
+
import numpy as np
|
6 |
import librosa
|
7 |
+
import tempfile
|
8 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
9 |
|
10 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
|
11 |
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
|
12 |
|
13 |
|
14 |
+
def transcribe(audio: tuple[int, np.ndarray], transformers_convo: list[dict], gradio_convo: list[dict]):
|
15 |
+
segment = AudioSegment(
|
16 |
+
audio[1].tobytes(),
|
17 |
+
frame_rate=audio[0],
|
18 |
+
sample_width=audio[1].dtype.itemsize,
|
19 |
+
channels=1,
|
20 |
+
)
|
21 |
+
|
22 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3") as temp_audio:
|
23 |
+
segment.export(temp_audio.name, format="mp3")
|
24 |
+
transformers_convo.append({"role": "user", "content": [{"type": "audio", "audio_url": temp_audio.name}]})
|
25 |
+
gradio_convo.append({"role": "assistant", "content": gr.Audio(value=temp_audio.name)})
|
26 |
+
text = processor.apply_chat_template(transformers_convo, add_generation_prompt=True, tokenize=False)
|
27 |
+
audios = []
|
28 |
+
for message in transformers_convo:
|
29 |
+
if isinstance(message["content"], list):
|
30 |
+
for ele in message["content"]:
|
31 |
+
if ele["type"] == "audio":
|
32 |
+
audios.append(librosa.load(
|
33 |
+
BytesIO(open(ele['audio_url'], "rb").read()),
|
34 |
+
sr=processor.feature_extractor.sampling_rate)[0]
|
35 |
+
)
|
36 |
+
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
|
37 |
+
inputs.input_ids = inputs.input_ids.to("cuda")
|
38 |
+
|
39 |
+
generate_ids = model.generate(**inputs, max_length=256)
|
40 |
+
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
|
41 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
42 |
+
print("response", response)
|
43 |
+
transformers_convo.append({"role": "assistant", "content": response})
|
44 |
+
gradio_convo.append({"role": "assistant", "content": response})
|
45 |
+
|
46 |
+
yield AdditionalOutputs(transformers_convo, gradio_convo)
|
47 |
+
|
48 |
+
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
transformers_convo = gr.State()
|
51 |
+
with gr.Row():
|
52 |
+
with gr.Column():
|
53 |
+
audio = WebRTC(
|
54 |
+
label="Stream",
|
55 |
+
mode="send",
|
56 |
+
modality="audio",
|
57 |
+
)
|
58 |
+
with gr.Column():
|
59 |
+
transcript = gr.Chatbot(label="transcript", type="messages")
|
60 |
+
|
61 |
+
audio.stream(ReplyOnPause(transcribe), inputs=[audio, transformers_convo, transcript], outputs=[audio])
|
62 |
+
audio.on_additional_outputs(lambda s: s, outputs=[transformers_convo, transcript])
|
63 |
|
64 |
+
if __name__ == "__main__":
|
65 |
+
demo.launch()
|