Spaces:
Sleeping
Sleeping
File size: 8,710 Bytes
c26ed9b 2145d76 c26ed9b 7160c8d ca5a024 c26ed9b bdb68e8 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d ca5a024 7160c8d ca5a024 7160c8d 5e9f512 2c502aa 5e9f512 2c502aa 5e9f512 7160c8d 5e9f512 7160c8d 5e9f512 7160c8d 5e9f512 c26ed9b f5c75b3 c26ed9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1deINvEblsMkv9h0gJzuGB4uSamW0DMX5
"""
#pip install streamlit transformers gdown torch pandas numpy
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json
import torch.cuda
import os
from datasets import load_dataset
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Step 1: Load Dataset and Precompute Embeddings
@st.cache_resource
def load_data_and_model():
"""
Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
"""
try:
# Download and load dataset
dataset = load_dataset("frankjosh/filtered_dataset")
data = pd.DataFrame(dataset['train'])
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Load CodeT5-small model and tokenizer
model_name = "Salesforce/codet5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoTokenizer.from_pretrained(model_name)
# Combine text fields for embedding generation
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
return data, tokenizer, model
@st.cache_resource
def load_model_and_tokenizer():
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Move model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
model.eval() # Set to evaluation mode
return tokenizer, model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.stop()
tokenizer, model = load_model_and_tokenizer()
# Define the embedding generation function
@st.cache_data
def generate_embedding(_model, _tokenizer, text):
inputs = _tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
if torch.cuda.is_available():
inputs = {k: v.to('cuda') for k, v in inputs.items()}
with torch.no_grad():
outputs = _model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
if torch.cuda.is_available():
embedding = embedding.cpu()
return embedding.numpy()
# Error handling for generating query embeddings
try:
query_embedding = generate_embedding(model, tokenizer, user_query)
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
st.stop()
# Precompute embeddings for dataset
def precompute_embeddings(data, model, tokenizer):
@st.cache_data
def generate_cached_embedding(text):
return generate_embedding(model, tokenizer, text)
# Apply embedding generation with progress bar
with st.spinner('Generating embeddings... This might take a few minutes on first run...'):
data['embedding'] = data['text'].apply(lambda x: generate_cached_embedding(x))
return data
# Example usage:
# data = precompute_embeddings(data, model, tokenizer)
def generate_case_study(repo_data):
"""
Generate a concise case study brief from repository data
"""
template = f"""
**Project Overview**: {repo_data['summary'][:50]}...
**Key Features**:
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
- {repo_data['docstring'][:50]}...
**Potential Applications**: This repository can be utilized for projects requiring {repo_data['summary'].split()[0:5]}...
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
**Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
"""
return template[:150] + "..."
def save_feedback(repo_id, feedback_type):
"""
Save user feedback for a repository
"""
if repo_id not in st.session_state.feedback:
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
st.session_state.feedback[repo_id][feedback_type] += 1
# Main App
st.title("Enhanced Repository Recommender System π")
# Sidebar for History and Stats
with st.sidebar:
st.header("π Search History")
if st.session_state.history:
for idx, item in enumerate(st.session_state.history[-5:]): # Show last 5 searches
with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
st.write(f"Time: {item['timestamp']}")
st.write(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
else:
st.write("No search history yet")
st.header("π Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
total_likes = sum(f['likes'] for f in st.session_state.feedback.values())
total_dislikes = sum(f['dislikes'] for f in st.session_state.feedback.values())
st.write(f"Total Likes: {total_likes}")
st.write(f"Total Dislikes: {total_dislikes}")
# Load resources
@st.cache_resource
def initialize_resources():
data, tokenizer, model = load_data_and_model()
return data, tokenizer, model
data, tokenizer, model = initialize_resources()
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("π Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query:
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_embedding(model, tokenizer, user_query)
data['similarity'] = data['embedding'].apply(
lambda x: cosine_similarity([query_embedding], [x])[0][0]
)
recommendations = data.nlargest(top_n, 'similarity')
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
# Repository details
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
if st.button("π", key=f"like_{idx}"):
save_feedback(row['repo'], 'likes')
st.success("Thanks for your feedback!")
with feedback_col2:
if st.button("π", key=f"dislike_{idx}"):
save_feedback(row['repo'], 'dislikes')
st.success("Thanks for your feedback!")
# Case Study Tab
with st.expander("π Case Study Brief"):
st.markdown(generate_case_study(row))
# Documentation Tab
if row['docstring']:
with st.expander("π Documentation"):
st.markdown(row['docstring'])
# Footer
st.markdown("---")
st.markdown(
"""
Made with π€ using CodeT5 and Streamlit |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
Model: CodeT5-Small
"""
) |