File size: 9,266 Bytes
c26ed9b
 
 
 
 
 
 
 
 
2145d76
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7160c8d
c26ed9b
 
 
 
 
 
 
 
 
 
 
7160c8d
 
 
 
c26ed9b
7160c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
7160c8d
c26ed9b
7160c8d
c26ed9b
7160c8d
 
 
 
 
 
 
 
 
c26ed9b
 
7160c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c75b3
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1deINvEblsMkv9h0gJzuGB4uSamW0DMX5
"""

#pip install streamlit transformers gdown torch pandas numpy

import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json
import torch.cuda
import os

# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize session state
if 'history' not in st.session_state:
    st.session_state.history = []
if 'feedback' not in st.session_state:
    st.session_state.feedback = {}


# Configuration
DATASET_GDRIVE_ID = "1pPYlUEtIA3bi8iLVKqzF-37sHoaOhTZz"  # Replace with your actual file ID
LOCAL_DATA_DIR = "data"
DATASET_FILENAME = "filtered_dataset.parquet"

def download_from_gdrive():
    """
    Download dataset from Google Drive with proper error handling
    """
    os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
    local_path = os.path.join(LOCAL_DATA_DIR, DATASET_FILENAME)
    
    if not os.path.exists(local_path):
        try:
            with st.spinner('Downloading dataset from Google Drive... This might take a few minutes...'):
                # Create direct download URL
                url = f'https://drive.google.com/uc?id={DATASET_GDRIVE_ID}'
                # Download file
                gdown.download(url, local_path, quiet=False)
                if os.path.exists(local_path):
                    st.success("Dataset downloaded successfully!")
                else:
                    st.error("Failed to download dataset")
                    st.stop()
        except Exception as e:
            st.error(f"Error downloading dataset: {str(e)}")
            st.stop()
    return local_path

# Step 1: Load Dataset and Precompute Embeddings
@st.cache_resource
def load_data_and_model():
    """
    Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
    """
    try:
        # Download and load dataset
        dataset_path = download_from_gdrive()
        data = pd.read_parquet(dataset_path)
    except Exception as e:
        st.error(f"Error loading dataset: {str(e)}")
        st.stop()

    # Combine text fields for embedding generation
    data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')

    # Load CodeT5-small model and tokenizer
    model_name = "Salesforce/codet5-small"
    
    @st.cache_resource
    def load_model_and_tokenizer():
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModel.from_pretrained(model_name)
            # Move model to GPU if available
            if torch.cuda.is_available():
                model = model.to('cuda')
            model.eval()  # Set to evaluation mode
            return tokenizer, model
        except Exception as e:
            st.error(f"Error loading model: {str(e)}")
            st.stop()
    
    tokenizer, model = load_model_and_tokenizer()

    # Precompute embeddings with GPU support
    @st.cache_data
    def generate_embedding(text):
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
        # Move inputs to GPU if available
        if torch.cuda.is_available():
            inputs = {k: v.to('cuda') for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model.encoder(**inputs)
        # Move output back to CPU if needed
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
        if torch.cuda.is_available():
            embedding = embedding.cpu()
        return embedding.numpy()

    # Generate embeddings with progress bar
    with st.spinner('Generating embeddings... This might take a few minutes on first run...'):
        data['embedding'] = data['text'].apply(lambda x: generate_embedding(x))
    
    return data, tokenizer, model


def generate_case_study(repo_data):
    """
    Generate a concise case study brief from repository data
    """
    template = f"""
    **Project Overview**: {repo_data['summary'][:50]}...

    **Key Features**:
    - Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
    - {repo_data['docstring'][:50]}...

    **Potential Applications**: This repository can be utilized for projects requiring {repo_data['summary'].split()[0:5]}...

    **Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}

    **Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
    """
    return template[:150] + "..."

def save_feedback(repo_id, feedback_type):
    """
    Save user feedback for a repository
    """
    if repo_id not in st.session_state.feedback:
        st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
    st.session_state.feedback[repo_id][feedback_type] += 1

# Main App
st.title("Enhanced Repository Recommender System πŸš€")

# Sidebar for History and Stats
with st.sidebar:
    st.header("πŸ“Š Search History")
    if st.session_state.history:
        for idx, item in enumerate(st.session_state.history[-5:]):  # Show last 5 searches
            with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
                st.write(f"Time: {item['timestamp']}")
                st.write(f"Results: {len(item['results'])} repositories")
                if st.button("Rerun this search", key=f"rerun_{idx}"):
                    st.session_state.rerun_query = item['query']
    else:
        st.write("No search history yet")

    st.header("πŸ“ˆ Usage Statistics")
    st.write(f"Total Searches: {len(st.session_state.history)}")
    if st.session_state.feedback:
        total_likes = sum(f['likes'] for f in st.session_state.feedback.values())
        total_dislikes = sum(f['dislikes'] for f in st.session_state.feedback.values())
        st.write(f"Total Likes: {total_likes}")
        st.write(f"Total Dislikes: {total_dislikes}")

# Load resources
@st.cache_resource
def initialize_resources():
    data, tokenizer, model = load_data_and_model()
    return data, tokenizer, model

data, tokenizer, model = initialize_resources()

# Main interface
user_query = st.text_area(
    "Describe your project:",
    height=150,
    placeholder="Example: I need a machine learning project for customer churn prediction..."
)

# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
    search_button = st.button("πŸ” Search Repositories", type="primary")
with col2:
    top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)

if search_button and user_query:
    with st.spinner("Finding relevant repositories..."):
        # Generate query embedding and get recommendations
        query_embedding = generate_embedding(model, tokenizer, user_query)
        data['similarity'] = data['embedding'].apply(
            lambda x: cosine_similarity([query_embedding], [x])[0][0]
        )
        recommendations = data.nlargest(top_n, 'similarity')

        # Save to history
        st.session_state.history.append({
            'query': user_query,
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'results': recommendations['repo'].tolist()
        })

        # Display recommendations
        st.markdown("### 🎯 Top Recommendations")
        for idx, row in recommendations.iterrows():
            with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
                # Repository details
                col1, col2 = st.columns([2, 1])
                with col1:
                    st.markdown(f"**URL:** [View Repository]({row['url']})")
                    st.markdown(f"**Path:** `{row['path']}`")
                with col2:
                    st.metric("Match Score", f"{row['similarity']:.2%}")

                    # Feedback buttons
                    feedback_col1, feedback_col2 = st.columns(2)
                    with feedback_col1:
                        if st.button("πŸ‘", key=f"like_{idx}"):
                            save_feedback(row['repo'], 'likes')
                            st.success("Thanks for your feedback!")
                    with feedback_col2:
                        if st.button("πŸ‘Ž", key=f"dislike_{idx}"):
                            save_feedback(row['repo'], 'dislikes')
                            st.success("Thanks for your feedback!")

                # Case Study Tab
                with st.expander("πŸ“‘ Case Study Brief"):
                    st.markdown(generate_case_study(row))

                # Documentation Tab
                if row['docstring']:
                    with st.expander("πŸ“š Documentation"):
                        st.markdown(row['docstring'])

# Footer
st.markdown("---")
st.markdown(
    """
    Made with πŸ€– using CodeT5 and Streamlit |
    GPU Status: {'🟒 Enabled' if torch.cuda.is_available() else 'πŸ”΄ Disabled'} |
    Model: CodeT5-Small
    """
)