Spaces:
Sleeping
Sleeping
File size: 9,266 Bytes
c26ed9b 2145d76 c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b f5c75b3 c26ed9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1deINvEblsMkv9h0gJzuGB4uSamW0DMX5
"""
#pip install streamlit transformers gdown torch pandas numpy
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json
import torch.cuda
import os
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Configuration
DATASET_GDRIVE_ID = "1pPYlUEtIA3bi8iLVKqzF-37sHoaOhTZz" # Replace with your actual file ID
LOCAL_DATA_DIR = "data"
DATASET_FILENAME = "filtered_dataset.parquet"
def download_from_gdrive():
"""
Download dataset from Google Drive with proper error handling
"""
os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
local_path = os.path.join(LOCAL_DATA_DIR, DATASET_FILENAME)
if not os.path.exists(local_path):
try:
with st.spinner('Downloading dataset from Google Drive... This might take a few minutes...'):
# Create direct download URL
url = f'https://drive.google.com/uc?id={DATASET_GDRIVE_ID}'
# Download file
gdown.download(url, local_path, quiet=False)
if os.path.exists(local_path):
st.success("Dataset downloaded successfully!")
else:
st.error("Failed to download dataset")
st.stop()
except Exception as e:
st.error(f"Error downloading dataset: {str(e)}")
st.stop()
return local_path
# Step 1: Load Dataset and Precompute Embeddings
@st.cache_resource
def load_data_and_model():
"""
Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
"""
try:
# Download and load dataset
dataset_path = download_from_gdrive()
data = pd.read_parquet(dataset_path)
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Combine text fields for embedding generation
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
# Load CodeT5-small model and tokenizer
model_name = "Salesforce/codet5-small"
@st.cache_resource
def load_model_and_tokenizer():
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Move model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
model.eval() # Set to evaluation mode
return tokenizer, model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.stop()
tokenizer, model = load_model_and_tokenizer()
# Precompute embeddings with GPU support
@st.cache_data
def generate_embedding(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Move inputs to GPU if available
if torch.cuda.is_available():
inputs = {k: v.to('cuda') for k, v in inputs.items()}
with torch.no_grad():
outputs = model.encoder(**inputs)
# Move output back to CPU if needed
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
if torch.cuda.is_available():
embedding = embedding.cpu()
return embedding.numpy()
# Generate embeddings with progress bar
with st.spinner('Generating embeddings... This might take a few minutes on first run...'):
data['embedding'] = data['text'].apply(lambda x: generate_embedding(x))
return data, tokenizer, model
def generate_case_study(repo_data):
"""
Generate a concise case study brief from repository data
"""
template = f"""
**Project Overview**: {repo_data['summary'][:50]}...
**Key Features**:
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
- {repo_data['docstring'][:50]}...
**Potential Applications**: This repository can be utilized for projects requiring {repo_data['summary'].split()[0:5]}...
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
**Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
"""
return template[:150] + "..."
def save_feedback(repo_id, feedback_type):
"""
Save user feedback for a repository
"""
if repo_id not in st.session_state.feedback:
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
st.session_state.feedback[repo_id][feedback_type] += 1
# Main App
st.title("Enhanced Repository Recommender System π")
# Sidebar for History and Stats
with st.sidebar:
st.header("π Search History")
if st.session_state.history:
for idx, item in enumerate(st.session_state.history[-5:]): # Show last 5 searches
with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
st.write(f"Time: {item['timestamp']}")
st.write(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
else:
st.write("No search history yet")
st.header("π Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
total_likes = sum(f['likes'] for f in st.session_state.feedback.values())
total_dislikes = sum(f['dislikes'] for f in st.session_state.feedback.values())
st.write(f"Total Likes: {total_likes}")
st.write(f"Total Dislikes: {total_dislikes}")
# Load resources
@st.cache_resource
def initialize_resources():
data, tokenizer, model = load_data_and_model()
return data, tokenizer, model
data, tokenizer, model = initialize_resources()
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("π Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query:
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_embedding(model, tokenizer, user_query)
data['similarity'] = data['embedding'].apply(
lambda x: cosine_similarity([query_embedding], [x])[0][0]
)
recommendations = data.nlargest(top_n, 'similarity')
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
# Repository details
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
if st.button("π", key=f"like_{idx}"):
save_feedback(row['repo'], 'likes')
st.success("Thanks for your feedback!")
with feedback_col2:
if st.button("π", key=f"dislike_{idx}"):
save_feedback(row['repo'], 'dislikes')
st.success("Thanks for your feedback!")
# Case Study Tab
with st.expander("π Case Study Brief"):
st.markdown(generate_case_study(row))
# Documentation Tab
if row['docstring']:
with st.expander("π Documentation"):
st.markdown(row['docstring'])
# Footer
st.markdown("---")
st.markdown(
"""
Made with π€ using CodeT5 and Streamlit |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
Model: CodeT5-Small
"""
) |