Spaces:
Running
Running
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import base64 | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
import zmq | |
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs | |
from lerobot.common.robot_devices.motors.feetech import TorqueMode | |
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs | |
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig | |
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration | |
from lerobot.common.robot_devices.robots.utils import get_arm_id | |
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError | |
PYNPUT_AVAILABLE = True | |
try: | |
# Only import if there's a valid X server or if we're not on a Pi | |
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform): | |
print("No DISPLAY set. Skipping pynput import.") | |
raise ImportError("pynput blocked intentionally due to no display.") | |
from pynput import keyboard | |
except ImportError: | |
keyboard = None | |
PYNPUT_AVAILABLE = False | |
except Exception as e: | |
keyboard = None | |
PYNPUT_AVAILABLE = False | |
print(f"Could not import pynput: {e}") | |
class MobileManipulator: | |
""" | |
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot. | |
The robot includes a three omniwheel mobile base and a remote follower arm. | |
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then | |
forwarded to the remote follower arm (after applying a safety clamp). | |
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels. | |
""" | |
def __init__(self, config: LeKiwiRobotConfig): | |
""" | |
Expected keys in config: | |
- ip, port, video_port for the remote connection. | |
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc. | |
""" | |
self.robot_type = config.type | |
self.config = config | |
self.remote_ip = config.ip | |
self.remote_port = config.port | |
self.remote_port_video = config.video_port | |
self.calibration_dir = Path(self.config.calibration_dir) | |
self.logs = {} | |
self.teleop_keys = self.config.teleop_keys | |
# For teleoperation, the leader arm (local) is used to record the desired arm pose. | |
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms) | |
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms) | |
self.cameras = make_cameras_from_configs(self.config.cameras) | |
self.is_connected = False | |
self.last_frames = {} | |
self.last_present_speed = {} | |
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32) | |
# Define three speed levels and a current index | |
self.speed_levels = [ | |
{"xy": 0.1, "theta": 30}, # slow | |
{"xy": 0.2, "theta": 60}, # medium | |
{"xy": 0.3, "theta": 90}, # fast | |
] | |
self.speed_index = 0 # Start at slow | |
# ZeroMQ context and sockets. | |
self.context = None | |
self.cmd_socket = None | |
self.video_socket = None | |
# Keyboard state for base teleoperation. | |
self.running = True | |
self.pressed_keys = { | |
"forward": False, | |
"backward": False, | |
"left": False, | |
"right": False, | |
"rotate_left": False, | |
"rotate_right": False, | |
} | |
if PYNPUT_AVAILABLE: | |
print("pynput is available - enabling local keyboard listener.") | |
self.listener = keyboard.Listener( | |
on_press=self.on_press, | |
on_release=self.on_release, | |
) | |
self.listener.start() | |
else: | |
print("pynput not available - skipping local keyboard listener.") | |
self.listener = None | |
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list: | |
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors] | |
def camera_features(self) -> dict: | |
cam_ft = {} | |
for cam_key, cam in self.cameras.items(): | |
key = f"observation.images.{cam_key}" | |
cam_ft[key] = { | |
"shape": (cam.height, cam.width, cam.channels), | |
"names": ["height", "width", "channels"], | |
"info": None, | |
} | |
return cam_ft | |
def motor_features(self) -> dict: | |
follower_arm_names = [ | |
"shoulder_pan", | |
"shoulder_lift", | |
"elbow_flex", | |
"wrist_flex", | |
"wrist_roll", | |
"gripper", | |
] | |
observations = ["x_mm", "y_mm", "theta"] | |
combined_names = follower_arm_names + observations | |
return { | |
"action": { | |
"dtype": "float32", | |
"shape": (len(combined_names),), | |
"names": combined_names, | |
}, | |
"observation.state": { | |
"dtype": "float32", | |
"shape": (len(combined_names),), | |
"names": combined_names, | |
}, | |
} | |
def features(self): | |
return {**self.motor_features, **self.camera_features} | |
def has_camera(self): | |
return len(self.cameras) > 0 | |
def num_cameras(self): | |
return len(self.cameras) | |
def available_arms(self): | |
available = [] | |
for name in self.leader_arms: | |
available.append(get_arm_id(name, "leader")) | |
for name in self.follower_arms: | |
available.append(get_arm_id(name, "follower")) | |
return available | |
def on_press(self, key): | |
try: | |
# Movement | |
if key.char == self.teleop_keys["forward"]: | |
self.pressed_keys["forward"] = True | |
elif key.char == self.teleop_keys["backward"]: | |
self.pressed_keys["backward"] = True | |
elif key.char == self.teleop_keys["left"]: | |
self.pressed_keys["left"] = True | |
elif key.char == self.teleop_keys["right"]: | |
self.pressed_keys["right"] = True | |
elif key.char == self.teleop_keys["rotate_left"]: | |
self.pressed_keys["rotate_left"] = True | |
elif key.char == self.teleop_keys["rotate_right"]: | |
self.pressed_keys["rotate_right"] = True | |
# Quit teleoperation | |
elif key.char == self.teleop_keys["quit"]: | |
self.running = False | |
return False | |
# Speed control | |
elif key.char == self.teleop_keys["speed_up"]: | |
self.speed_index = min(self.speed_index + 1, 2) | |
print(f"Speed index increased to {self.speed_index}") | |
elif key.char == self.teleop_keys["speed_down"]: | |
self.speed_index = max(self.speed_index - 1, 0) | |
print(f"Speed index decreased to {self.speed_index}") | |
except AttributeError: | |
# e.g., if key is special like Key.esc | |
if key == keyboard.Key.esc: | |
self.running = False | |
return False | |
def on_release(self, key): | |
try: | |
if hasattr(key, "char"): | |
if key.char == self.teleop_keys["forward"]: | |
self.pressed_keys["forward"] = False | |
elif key.char == self.teleop_keys["backward"]: | |
self.pressed_keys["backward"] = False | |
elif key.char == self.teleop_keys["left"]: | |
self.pressed_keys["left"] = False | |
elif key.char == self.teleop_keys["right"]: | |
self.pressed_keys["right"] = False | |
elif key.char == self.teleop_keys["rotate_left"]: | |
self.pressed_keys["rotate_left"] = False | |
elif key.char == self.teleop_keys["rotate_right"]: | |
self.pressed_keys["rotate_right"] = False | |
except AttributeError: | |
pass | |
def connect(self): | |
if not self.leader_arms: | |
raise ValueError("MobileManipulator has no leader arm to connect.") | |
for name in self.leader_arms: | |
print(f"Connecting {name} leader arm.") | |
self.calibrate_leader() | |
# Set up ZeroMQ sockets to communicate with the remote mobile robot. | |
self.context = zmq.Context() | |
self.cmd_socket = self.context.socket(zmq.PUSH) | |
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}" | |
self.cmd_socket.connect(connection_string) | |
self.cmd_socket.setsockopt(zmq.CONFLATE, 1) | |
self.video_socket = self.context.socket(zmq.PULL) | |
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}" | |
self.video_socket.connect(video_connection) | |
self.video_socket.setsockopt(zmq.CONFLATE, 1) | |
print( | |
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}." | |
) | |
self.is_connected = True | |
def load_or_run_calibration_(self, name, arm, arm_type): | |
arm_id = get_arm_id(name, arm_type) | |
arm_calib_path = self.calibration_dir / f"{arm_id}.json" | |
if arm_calib_path.exists(): | |
with open(arm_calib_path) as f: | |
calibration = json.load(f) | |
else: | |
print(f"Missing calibration file '{arm_calib_path}'") | |
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type) | |
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'") | |
arm_calib_path.parent.mkdir(parents=True, exist_ok=True) | |
with open(arm_calib_path, "w") as f: | |
json.dump(calibration, f) | |
return calibration | |
def calibrate_leader(self): | |
for name, arm in self.leader_arms.items(): | |
# Connect the bus | |
arm.connect() | |
# Disable torque on all motors | |
for motor_id in arm.motors: | |
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id) | |
# Now run calibration | |
calibration = self.load_or_run_calibration_(name, arm, "leader") | |
arm.set_calibration(calibration) | |
def calibrate_follower(self): | |
for name, bus in self.follower_arms.items(): | |
bus.connect() | |
# Disable torque on all motors | |
for motor_id in bus.motors: | |
bus.write("Torque_Enable", 0, motor_id) | |
# Then filter out wheels | |
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")} | |
if not arm_only_dict: | |
continue | |
original_motors = bus.motors | |
bus.motors = arm_only_dict | |
calibration = self.load_or_run_calibration_(name, bus, "follower") | |
bus.set_calibration(calibration) | |
bus.motors = original_motors | |
def _get_data(self): | |
""" | |
Polls the video socket for up to 15 ms. If data arrives, decode only | |
the *latest* message, returning frames, speed, and arm state. If | |
nothing arrives for any field, use the last known values. | |
""" | |
frames = {} | |
present_speed = {} | |
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32) | |
# Poll up to 15 ms | |
poller = zmq.Poller() | |
poller.register(self.video_socket, zmq.POLLIN) | |
socks = dict(poller.poll(15)) | |
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN: | |
# No new data arrived → reuse ALL old data | |
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state) | |
# Drain all messages, keep only the last | |
last_msg = None | |
while True: | |
try: | |
obs_string = self.video_socket.recv_string(zmq.NOBLOCK) | |
last_msg = obs_string | |
except zmq.Again: | |
break | |
if not last_msg: | |
# No new message → also reuse old | |
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state) | |
# Decode only the final message | |
try: | |
observation = json.loads(last_msg) | |
images_dict = observation.get("images", {}) | |
new_speed = observation.get("present_speed", {}) | |
new_arm_state = observation.get("follower_arm_state", None) | |
# Convert images | |
for cam_name, image_b64 in images_dict.items(): | |
if image_b64: | |
jpg_data = base64.b64decode(image_b64) | |
np_arr = np.frombuffer(jpg_data, dtype=np.uint8) | |
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) | |
if frame_candidate is not None: | |
frames[cam_name] = frame_candidate | |
# If remote_arm_state is None and frames is None there is no message then use the previous message | |
if new_arm_state is not None and frames is not None: | |
self.last_frames = frames | |
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32) | |
self.last_remote_arm_state = remote_arm_state_tensor | |
present_speed = new_speed | |
self.last_present_speed = new_speed | |
else: | |
frames = self.last_frames | |
remote_arm_state_tensor = self.last_remote_arm_state | |
present_speed = self.last_present_speed | |
except Exception as e: | |
print(f"[DEBUG] Error decoding video message: {e}") | |
# If decode fails, fall back to old data | |
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state) | |
return frames, present_speed, remote_arm_state_tensor | |
def _process_present_speed(self, present_speed: dict) -> torch.Tensor: | |
state_tensor = torch.zeros(3, dtype=torch.int32) | |
if present_speed: | |
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()} | |
if "1" in decoded: | |
state_tensor[0] = decoded["1"] | |
if "2" in decoded: | |
state_tensor[1] = decoded["2"] | |
if "3" in decoded: | |
state_tensor[2] = decoded["3"] | |
return state_tensor | |
def teleop_step( | |
self, record_data: bool = False | |
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]: | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.") | |
speed_setting = self.speed_levels[self.speed_index] | |
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4 | |
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90 | |
# Prepare to assign the position of the leader to the follower | |
arm_positions = [] | |
for name in self.leader_arms: | |
pos = self.leader_arms[name].read("Present_Position") | |
pos_tensor = torch.from_numpy(pos).float() | |
arm_positions.extend(pos_tensor.tolist()) | |
y_cmd = 0.0 # m/s forward/backward | |
x_cmd = 0.0 # m/s lateral | |
theta_cmd = 0.0 # deg/s rotation | |
if self.pressed_keys["forward"]: | |
y_cmd += xy_speed | |
if self.pressed_keys["backward"]: | |
y_cmd -= xy_speed | |
if self.pressed_keys["left"]: | |
x_cmd += xy_speed | |
if self.pressed_keys["right"]: | |
x_cmd -= xy_speed | |
if self.pressed_keys["rotate_left"]: | |
theta_cmd += theta_speed | |
if self.pressed_keys["rotate_right"]: | |
theta_cmd -= theta_speed | |
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd) | |
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions} | |
self.cmd_socket.send_string(json.dumps(message)) | |
if not record_data: | |
return | |
obs_dict = self.capture_observation() | |
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32) | |
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands) | |
wheel_velocity_mm = ( | |
wheel_velocity_tuple[0] * 1000.0, | |
wheel_velocity_tuple[1] * 1000.0, | |
wheel_velocity_tuple[2], | |
) | |
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32) | |
action_tensor = torch.cat([arm_state_tensor, wheel_tensor]) | |
action_dict = {"action": action_tensor} | |
return obs_dict, action_dict | |
def capture_observation(self) -> dict: | |
""" | |
Capture observations from the remote robot: current follower arm positions, | |
present wheel speeds (converted to body-frame velocities: x, y, theta), | |
and a camera frame. | |
""" | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.") | |
frames, present_speed, remote_arm_state_tensor = self._get_data() | |
body_state = self.wheel_raw_to_body(present_speed) | |
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s | |
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32) | |
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0) | |
obs_dict = {"observation.state": combined_state_tensor} | |
# Loop over each configured camera | |
for cam_name, cam in self.cameras.items(): | |
frame = frames.get(cam_name, None) | |
if frame is None: | |
# Create a black image using the camera's configured width, height, and channels | |
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8) | |
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame) | |
return obs_dict | |
def send_action(self, action: torch.Tensor) -> torch.Tensor: | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.") | |
# Ensure the action tensor has at least 9 elements: | |
# - First 6: arm positions. | |
# - Last 3: base commands. | |
if action.numel() < 9: | |
# Pad with zeros if there are not enough elements. | |
padded = torch.zeros(9, dtype=action.dtype) | |
padded[: action.numel()] = action | |
action = padded | |
# Extract arm and base actions. | |
arm_actions = action[:6].flatten() | |
base_actions = action[6:].flatten() | |
x_cmd_mm = base_actions[0].item() # mm/s | |
y_cmd_mm = base_actions[1].item() # mm/s | |
theta_cmd = base_actions[2].item() # deg/s | |
# Convert mm/s to m/s for the kinematics calculations. | |
x_cmd = x_cmd_mm / 1000.0 # m/s | |
y_cmd = y_cmd_mm / 1000.0 # m/s | |
# Compute wheel commands from body commands. | |
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd) | |
arm_positions_list = arm_actions.tolist() | |
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list} | |
self.cmd_socket.send_string(json.dumps(message)) | |
return action | |
def print_logs(self): | |
pass | |
def disconnect(self): | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError("Not connected.") | |
if self.cmd_socket: | |
stop_cmd = { | |
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0}, | |
"arm_positions": {}, | |
} | |
self.cmd_socket.send_string(json.dumps(stop_cmd)) | |
self.cmd_socket.close() | |
if self.video_socket: | |
self.video_socket.close() | |
if self.context: | |
self.context.term() | |
if PYNPUT_AVAILABLE: | |
self.listener.stop() | |
self.is_connected = False | |
print("[INFO] Disconnected from remote robot.") | |
def __del__(self): | |
if getattr(self, "is_connected", False): | |
self.disconnect() | |
if PYNPUT_AVAILABLE: | |
self.listener.stop() | |
def degps_to_raw(degps: float) -> int: | |
steps_per_deg = 4096.0 / 360.0 | |
speed_in_steps = abs(degps) * steps_per_deg | |
speed_int = int(round(speed_in_steps)) | |
if speed_int > 0x7FFF: | |
speed_int = 0x7FFF | |
if degps < 0: | |
return speed_int | 0x8000 | |
else: | |
return speed_int & 0x7FFF | |
def raw_to_degps(raw_speed: int) -> float: | |
steps_per_deg = 4096.0 / 360.0 | |
magnitude = raw_speed & 0x7FFF | |
degps = magnitude / steps_per_deg | |
if raw_speed & 0x8000: | |
degps = -degps | |
return degps | |
def body_to_wheel_raw( | |
self, | |
x_cmd: float, | |
y_cmd: float, | |
theta_cmd: float, | |
wheel_radius: float = 0.05, | |
base_radius: float = 0.125, | |
max_raw: int = 3000, | |
) -> dict: | |
""" | |
Convert desired body-frame velocities into wheel raw commands. | |
Parameters: | |
x_cmd : Linear velocity in x (m/s). | |
y_cmd : Linear velocity in y (m/s). | |
theta_cmd : Rotational velocity (deg/s). | |
wheel_radius: Radius of each wheel (meters). | |
base_radius : Distance from the center of rotation to each wheel (meters). | |
max_raw : Maximum allowed raw command (ticks) per wheel. | |
Returns: | |
A dictionary with wheel raw commands: | |
{"left_wheel": value, "back_wheel": value, "right_wheel": value}. | |
Notes: | |
- Internally, the method converts theta_cmd to rad/s for the kinematics. | |
- The raw command is computed from the wheels angular speed in deg/s | |
using degps_to_raw(). If any command exceeds max_raw, all commands | |
are scaled down proportionally. | |
""" | |
# Convert rotational velocity from deg/s to rad/s. | |
theta_rad = theta_cmd * (np.pi / 180.0) | |
# Create the body velocity vector [x, y, theta_rad]. | |
velocity_vector = np.array([x_cmd, y_cmd, theta_rad]) | |
# Define the wheel mounting angles (defined from y axis cw) | |
angles = np.radians(np.array([300, 180, 60])) | |
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed. | |
# The third column (base_radius) accounts for the effect of rotation. | |
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles]) | |
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s). | |
wheel_linear_speeds = m.dot(velocity_vector) | |
wheel_angular_speeds = wheel_linear_speeds / wheel_radius | |
# Convert wheel angular speeds from rad/s to deg/s. | |
wheel_degps = wheel_angular_speeds * (180.0 / np.pi) | |
# Scaling | |
steps_per_deg = 4096.0 / 360.0 | |
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps] | |
max_raw_computed = max(raw_floats) | |
if max_raw_computed > max_raw: | |
scale = max_raw / max_raw_computed | |
wheel_degps = wheel_degps * scale | |
# Convert each wheel’s angular speed (deg/s) to a raw integer. | |
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps] | |
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]} | |
def wheel_raw_to_body( | |
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125 | |
) -> tuple: | |
""" | |
Convert wheel raw command feedback back into body-frame velocities. | |
Parameters: | |
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel"). | |
wheel_radius: Radius of each wheel (meters). | |
base_radius : Distance from the robot center to each wheel (meters). | |
Returns: | |
A tuple (x_cmd, y_cmd, theta_cmd) where: | |
x_cmd : Linear velocity in x (m/s). | |
y_cmd : Linear velocity in y (m/s). | |
theta_cmd : Rotational velocity in deg/s. | |
""" | |
# Extract the raw values in order. | |
raw_list = [ | |
int(wheel_raw.get("left_wheel", 0)), | |
int(wheel_raw.get("back_wheel", 0)), | |
int(wheel_raw.get("right_wheel", 0)), | |
] | |
# Convert each raw command back to an angular speed in deg/s. | |
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list]) | |
# Convert from deg/s to rad/s. | |
wheel_radps = wheel_degps * (np.pi / 180.0) | |
# Compute each wheel’s linear speed (m/s) from its angular speed. | |
wheel_linear_speeds = wheel_radps * wheel_radius | |
# Define the wheel mounting angles (defined from y axis cw) | |
angles = np.radians(np.array([300, 180, 60])) | |
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles]) | |
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds. | |
m_inv = np.linalg.inv(m) | |
velocity_vector = m_inv.dot(wheel_linear_speeds) | |
x_cmd, y_cmd, theta_rad = velocity_vector | |
theta_cmd = theta_rad * (180.0 / np.pi) | |
return (x_cmd, y_cmd, theta_cmd) | |
class LeKiwi: | |
def __init__(self, motor_bus): | |
""" | |
Initializes the LeKiwi with Feetech motors bus. | |
""" | |
self.motor_bus = motor_bus | |
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"] | |
# Initialize motors in velocity mode. | |
self.motor_bus.write("Lock", 0) | |
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids) | |
self.motor_bus.write("Lock", 1) | |
print("Motors set to velocity mode.") | |
def read_velocity(self): | |
""" | |
Reads the raw speeds for all wheels. Returns a dictionary with motor names: | |
""" | |
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids) | |
return { | |
"left_wheel": int(raw_speeds[0]), | |
"back_wheel": int(raw_speeds[1]), | |
"right_wheel": int(raw_speeds[2]), | |
} | |
def set_velocity(self, command_speeds): | |
""" | |
Sends raw velocity commands (16-bit encoded values) directly to the motor bus. | |
The order of speeds must correspond to self.motor_ids. | |
""" | |
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids) | |
def stop(self): | |
"""Stops the robot by setting all motor speeds to zero.""" | |
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids) | |
print("Motors stopped.") | |