Spaces:
Running
Running
File size: 27,269 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import os
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
self.config = config
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
self.teleop_keys = self.config.teleop_keys
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
self.is_connected = False
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
arm_positions.extend(pos_tensor.tolist())
y_cmd = 0.0 # m/s forward/backward
x_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
y_cmd += xy_speed
if self.pressed_keys["backward"]:
y_cmd -= xy_speed
if self.pressed_keys["left"]:
x_cmd += xy_speed
if self.pressed_keys["right"]:
x_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
arm_positions_list = arm_actions.tolist()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
return action
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheel’s angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheel’s linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
print("Motors stopped.")
|