File size: 27,269 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import json
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import torch
import zmq

from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError

PYNPUT_AVAILABLE = True
try:
    # Only import if there's a valid X server or if we're not on a Pi
    if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
        print("No DISPLAY set. Skipping pynput import.")
        raise ImportError("pynput blocked intentionally due to no display.")

    from pynput import keyboard
except ImportError:
    keyboard = None
    PYNPUT_AVAILABLE = False
except Exception as e:
    keyboard = None
    PYNPUT_AVAILABLE = False
    print(f"Could not import pynput: {e}")


class MobileManipulator:
    """
    MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
    The robot includes a three omniwheel mobile base and a remote follower arm.
    The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
    forwarded to the remote follower arm (after applying a safety clamp).
    In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
    """

    def __init__(self, config: LeKiwiRobotConfig):
        """
        Expected keys in config:
          - ip, port, video_port for the remote connection.
          - calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
        """
        self.robot_type = config.type
        self.config = config
        self.remote_ip = config.ip
        self.remote_port = config.port
        self.remote_port_video = config.video_port
        self.calibration_dir = Path(self.config.calibration_dir)
        self.logs = {}

        self.teleop_keys = self.config.teleop_keys

        # For teleoperation, the leader arm (local) is used to record the desired arm pose.
        self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)

        self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)

        self.cameras = make_cameras_from_configs(self.config.cameras)

        self.is_connected = False

        self.last_frames = {}
        self.last_present_speed = {}
        self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)

        # Define three speed levels and a current index
        self.speed_levels = [
            {"xy": 0.1, "theta": 30},  # slow
            {"xy": 0.2, "theta": 60},  # medium
            {"xy": 0.3, "theta": 90},  # fast
        ]
        self.speed_index = 0  # Start at slow

        # ZeroMQ context and sockets.
        self.context = None
        self.cmd_socket = None
        self.video_socket = None

        # Keyboard state for base teleoperation.
        self.running = True
        self.pressed_keys = {
            "forward": False,
            "backward": False,
            "left": False,
            "right": False,
            "rotate_left": False,
            "rotate_right": False,
        }

        if PYNPUT_AVAILABLE:
            print("pynput is available - enabling local keyboard listener.")
            self.listener = keyboard.Listener(
                on_press=self.on_press,
                on_release=self.on_release,
            )
            self.listener.start()
        else:
            print("pynput not available - skipping local keyboard listener.")
            self.listener = None

    def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
        return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]

    @property
    def camera_features(self) -> dict:
        cam_ft = {}
        for cam_key, cam in self.cameras.items():
            key = f"observation.images.{cam_key}"
            cam_ft[key] = {
                "shape": (cam.height, cam.width, cam.channels),
                "names": ["height", "width", "channels"],
                "info": None,
            }
        return cam_ft

    @property
    def motor_features(self) -> dict:
        follower_arm_names = [
            "shoulder_pan",
            "shoulder_lift",
            "elbow_flex",
            "wrist_flex",
            "wrist_roll",
            "gripper",
        ]
        observations = ["x_mm", "y_mm", "theta"]
        combined_names = follower_arm_names + observations
        return {
            "action": {
                "dtype": "float32",
                "shape": (len(combined_names),),
                "names": combined_names,
            },
            "observation.state": {
                "dtype": "float32",
                "shape": (len(combined_names),),
                "names": combined_names,
            },
        }

    @property
    def features(self):
        return {**self.motor_features, **self.camera_features}

    @property
    def has_camera(self):
        return len(self.cameras) > 0

    @property
    def num_cameras(self):
        return len(self.cameras)

    @property
    def available_arms(self):
        available = []
        for name in self.leader_arms:
            available.append(get_arm_id(name, "leader"))
        for name in self.follower_arms:
            available.append(get_arm_id(name, "follower"))
        return available

    def on_press(self, key):
        try:
            # Movement
            if key.char == self.teleop_keys["forward"]:
                self.pressed_keys["forward"] = True
            elif key.char == self.teleop_keys["backward"]:
                self.pressed_keys["backward"] = True
            elif key.char == self.teleop_keys["left"]:
                self.pressed_keys["left"] = True
            elif key.char == self.teleop_keys["right"]:
                self.pressed_keys["right"] = True
            elif key.char == self.teleop_keys["rotate_left"]:
                self.pressed_keys["rotate_left"] = True
            elif key.char == self.teleop_keys["rotate_right"]:
                self.pressed_keys["rotate_right"] = True

            # Quit teleoperation
            elif key.char == self.teleop_keys["quit"]:
                self.running = False
                return False

            # Speed control
            elif key.char == self.teleop_keys["speed_up"]:
                self.speed_index = min(self.speed_index + 1, 2)
                print(f"Speed index increased to {self.speed_index}")
            elif key.char == self.teleop_keys["speed_down"]:
                self.speed_index = max(self.speed_index - 1, 0)
                print(f"Speed index decreased to {self.speed_index}")

        except AttributeError:
            # e.g., if key is special like Key.esc
            if key == keyboard.Key.esc:
                self.running = False
                return False

    def on_release(self, key):
        try:
            if hasattr(key, "char"):
                if key.char == self.teleop_keys["forward"]:
                    self.pressed_keys["forward"] = False
                elif key.char == self.teleop_keys["backward"]:
                    self.pressed_keys["backward"] = False
                elif key.char == self.teleop_keys["left"]:
                    self.pressed_keys["left"] = False
                elif key.char == self.teleop_keys["right"]:
                    self.pressed_keys["right"] = False
                elif key.char == self.teleop_keys["rotate_left"]:
                    self.pressed_keys["rotate_left"] = False
                elif key.char == self.teleop_keys["rotate_right"]:
                    self.pressed_keys["rotate_right"] = False
        except AttributeError:
            pass

    def connect(self):
        if not self.leader_arms:
            raise ValueError("MobileManipulator has no leader arm to connect.")
        for name in self.leader_arms:
            print(f"Connecting {name} leader arm.")
            self.calibrate_leader()

        # Set up ZeroMQ sockets to communicate with the remote mobile robot.
        self.context = zmq.Context()
        self.cmd_socket = self.context.socket(zmq.PUSH)
        connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
        self.cmd_socket.connect(connection_string)
        self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
        self.video_socket = self.context.socket(zmq.PULL)
        video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
        self.video_socket.connect(video_connection)
        self.video_socket.setsockopt(zmq.CONFLATE, 1)
        print(
            f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
        )
        self.is_connected = True

    def load_or_run_calibration_(self, name, arm, arm_type):
        arm_id = get_arm_id(name, arm_type)
        arm_calib_path = self.calibration_dir / f"{arm_id}.json"

        if arm_calib_path.exists():
            with open(arm_calib_path) as f:
                calibration = json.load(f)
        else:
            print(f"Missing calibration file '{arm_calib_path}'")
            calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
            print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
            arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
            with open(arm_calib_path, "w") as f:
                json.dump(calibration, f)

        return calibration

    def calibrate_leader(self):
        for name, arm in self.leader_arms.items():
            # Connect the bus
            arm.connect()

            # Disable torque on all motors
            for motor_id in arm.motors:
                arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)

            # Now run calibration
            calibration = self.load_or_run_calibration_(name, arm, "leader")
            arm.set_calibration(calibration)

    def calibrate_follower(self):
        for name, bus in self.follower_arms.items():
            bus.connect()

            # Disable torque on all motors
            for motor_id in bus.motors:
                bus.write("Torque_Enable", 0, motor_id)

            # Then filter out wheels
            arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
            if not arm_only_dict:
                continue

            original_motors = bus.motors
            bus.motors = arm_only_dict

            calibration = self.load_or_run_calibration_(name, bus, "follower")
            bus.set_calibration(calibration)

            bus.motors = original_motors

    def _get_data(self):
        """
        Polls the video socket for up to 15 ms. If data arrives, decode only
        the *latest* message, returning frames, speed, and arm state. If
        nothing arrives for any field, use the last known values.
        """
        frames = {}
        present_speed = {}
        remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)

        # Poll up to 15 ms
        poller = zmq.Poller()
        poller.register(self.video_socket, zmq.POLLIN)
        socks = dict(poller.poll(15))
        if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
            # No new data arrived → reuse ALL old data
            return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)

        # Drain all messages, keep only the last
        last_msg = None
        while True:
            try:
                obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
                last_msg = obs_string
            except zmq.Again:
                break

        if not last_msg:
            # No new message → also reuse old
            return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)

        # Decode only the final message
        try:
            observation = json.loads(last_msg)

            images_dict = observation.get("images", {})
            new_speed = observation.get("present_speed", {})
            new_arm_state = observation.get("follower_arm_state", None)

            # Convert images
            for cam_name, image_b64 in images_dict.items():
                if image_b64:
                    jpg_data = base64.b64decode(image_b64)
                    np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
                    frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
                    if frame_candidate is not None:
                        frames[cam_name] = frame_candidate

            # If remote_arm_state is None and frames is None there is no message then use the previous message
            if new_arm_state is not None and frames is not None:
                self.last_frames = frames

                remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
                self.last_remote_arm_state = remote_arm_state_tensor

                present_speed = new_speed
                self.last_present_speed = new_speed
            else:
                frames = self.last_frames

                remote_arm_state_tensor = self.last_remote_arm_state

                present_speed = self.last_present_speed

        except Exception as e:
            print(f"[DEBUG] Error decoding video message: {e}")
            # If decode fails, fall back to old data
            return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)

        return frames, present_speed, remote_arm_state_tensor

    def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
        state_tensor = torch.zeros(3, dtype=torch.int32)
        if present_speed:
            decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
            if "1" in decoded:
                state_tensor[0] = decoded["1"]
            if "2" in decoded:
                state_tensor[1] = decoded["2"]
            if "3" in decoded:
                state_tensor[2] = decoded["3"]
        return state_tensor

    def teleop_step(
        self, record_data: bool = False
    ) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
        if not self.is_connected:
            raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")

        speed_setting = self.speed_levels[self.speed_index]
        xy_speed = speed_setting["xy"]  # e.g. 0.1, 0.25, or 0.4
        theta_speed = speed_setting["theta"]  # e.g. 30, 60, or 90

        # Prepare to assign the position of the leader to the follower
        arm_positions = []
        for name in self.leader_arms:
            pos = self.leader_arms[name].read("Present_Position")
            pos_tensor = torch.from_numpy(pos).float()
            arm_positions.extend(pos_tensor.tolist())

        y_cmd = 0.0  # m/s forward/backward
        x_cmd = 0.0  # m/s lateral
        theta_cmd = 0.0  # deg/s rotation
        if self.pressed_keys["forward"]:
            y_cmd += xy_speed
        if self.pressed_keys["backward"]:
            y_cmd -= xy_speed
        if self.pressed_keys["left"]:
            x_cmd += xy_speed
        if self.pressed_keys["right"]:
            x_cmd -= xy_speed
        if self.pressed_keys["rotate_left"]:
            theta_cmd += theta_speed
        if self.pressed_keys["rotate_right"]:
            theta_cmd -= theta_speed

        wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)

        message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
        self.cmd_socket.send_string(json.dumps(message))

        if not record_data:
            return

        obs_dict = self.capture_observation()

        arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)

        wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
        wheel_velocity_mm = (
            wheel_velocity_tuple[0] * 1000.0,
            wheel_velocity_tuple[1] * 1000.0,
            wheel_velocity_tuple[2],
        )
        wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
        action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
        action_dict = {"action": action_tensor}

        return obs_dict, action_dict

    def capture_observation(self) -> dict:
        """
        Capture observations from the remote robot: current follower arm positions,
        present wheel speeds (converted to body-frame velocities: x, y, theta),
        and a camera frame.
        """
        if not self.is_connected:
            raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")

        frames, present_speed, remote_arm_state_tensor = self._get_data()

        body_state = self.wheel_raw_to_body(present_speed)

        body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2])  # Convert x,y to mm/s
        wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
        combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)

        obs_dict = {"observation.state": combined_state_tensor}

        # Loop over each configured camera
        for cam_name, cam in self.cameras.items():
            frame = frames.get(cam_name, None)
            if frame is None:
                # Create a black image using the camera's configured width, height, and channels
                frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
            obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)

        return obs_dict

    def send_action(self, action: torch.Tensor) -> torch.Tensor:
        if not self.is_connected:
            raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")

        # Ensure the action tensor has at least 9 elements:
        #   - First 6: arm positions.
        #   - Last 3: base commands.
        if action.numel() < 9:
            # Pad with zeros if there are not enough elements.
            padded = torch.zeros(9, dtype=action.dtype)
            padded[: action.numel()] = action
            action = padded

        # Extract arm and base actions.
        arm_actions = action[:6].flatten()
        base_actions = action[6:].flatten()

        x_cmd_mm = base_actions[0].item()  # mm/s
        y_cmd_mm = base_actions[1].item()  # mm/s
        theta_cmd = base_actions[2].item()  # deg/s

        # Convert mm/s to m/s for the kinematics calculations.
        x_cmd = x_cmd_mm / 1000.0  # m/s
        y_cmd = y_cmd_mm / 1000.0  # m/s

        # Compute wheel commands from body commands.
        wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)

        arm_positions_list = arm_actions.tolist()

        message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
        self.cmd_socket.send_string(json.dumps(message))

        return action

    def print_logs(self):
        pass

    def disconnect(self):
        if not self.is_connected:
            raise RobotDeviceNotConnectedError("Not connected.")
        if self.cmd_socket:
            stop_cmd = {
                "raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
                "arm_positions": {},
            }
            self.cmd_socket.send_string(json.dumps(stop_cmd))
            self.cmd_socket.close()
        if self.video_socket:
            self.video_socket.close()
        if self.context:
            self.context.term()
        if PYNPUT_AVAILABLE:
            self.listener.stop()
        self.is_connected = False
        print("[INFO] Disconnected from remote robot.")

    def __del__(self):
        if getattr(self, "is_connected", False):
            self.disconnect()
        if PYNPUT_AVAILABLE:
            self.listener.stop()

    @staticmethod
    def degps_to_raw(degps: float) -> int:
        steps_per_deg = 4096.0 / 360.0
        speed_in_steps = abs(degps) * steps_per_deg
        speed_int = int(round(speed_in_steps))
        if speed_int > 0x7FFF:
            speed_int = 0x7FFF
        if degps < 0:
            return speed_int | 0x8000
        else:
            return speed_int & 0x7FFF

    @staticmethod
    def raw_to_degps(raw_speed: int) -> float:
        steps_per_deg = 4096.0 / 360.0
        magnitude = raw_speed & 0x7FFF
        degps = magnitude / steps_per_deg
        if raw_speed & 0x8000:
            degps = -degps
        return degps

    def body_to_wheel_raw(
        self,
        x_cmd: float,
        y_cmd: float,
        theta_cmd: float,
        wheel_radius: float = 0.05,
        base_radius: float = 0.125,
        max_raw: int = 3000,
    ) -> dict:
        """
        Convert desired body-frame velocities into wheel raw commands.

        Parameters:
          x_cmd      : Linear velocity in x (m/s).
          y_cmd      : Linear velocity in y (m/s).
          theta_cmd  : Rotational velocity (deg/s).
          wheel_radius: Radius of each wheel (meters).
          base_radius : Distance from the center of rotation to each wheel (meters).
          max_raw    : Maximum allowed raw command (ticks) per wheel.

        Returns:
          A dictionary with wheel raw commands:
             {"left_wheel": value, "back_wheel": value, "right_wheel": value}.

        Notes:
          - Internally, the method converts theta_cmd to rad/s for the kinematics.
          - The raw command is computed from the wheels angular speed in deg/s
            using degps_to_raw(). If any command exceeds max_raw, all commands
            are scaled down proportionally.
        """
        # Convert rotational velocity from deg/s to rad/s.
        theta_rad = theta_cmd * (np.pi / 180.0)
        # Create the body velocity vector [x, y, theta_rad].
        velocity_vector = np.array([x_cmd, y_cmd, theta_rad])

        # Define the wheel mounting angles (defined from y axis cw)
        angles = np.radians(np.array([300, 180, 60]))
        # Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
        # The third column (base_radius) accounts for the effect of rotation.
        m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])

        # Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
        wheel_linear_speeds = m.dot(velocity_vector)
        wheel_angular_speeds = wheel_linear_speeds / wheel_radius

        # Convert wheel angular speeds from rad/s to deg/s.
        wheel_degps = wheel_angular_speeds * (180.0 / np.pi)

        # Scaling
        steps_per_deg = 4096.0 / 360.0
        raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
        max_raw_computed = max(raw_floats)
        if max_raw_computed > max_raw:
            scale = max_raw / max_raw_computed
            wheel_degps = wheel_degps * scale

        # Convert each wheel’s angular speed (deg/s) to a raw integer.
        wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]

        return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}

    def wheel_raw_to_body(
        self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
    ) -> tuple:
        """
        Convert wheel raw command feedback back into body-frame velocities.

        Parameters:
          wheel_raw   : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
          wheel_radius: Radius of each wheel (meters).
          base_radius : Distance from the robot center to each wheel (meters).

        Returns:
          A tuple (x_cmd, y_cmd, theta_cmd) where:
             x_cmd      : Linear velocity in x (m/s).
             y_cmd      : Linear velocity in y (m/s).
             theta_cmd  : Rotational velocity in deg/s.
        """
        # Extract the raw values in order.
        raw_list = [
            int(wheel_raw.get("left_wheel", 0)),
            int(wheel_raw.get("back_wheel", 0)),
            int(wheel_raw.get("right_wheel", 0)),
        ]

        # Convert each raw command back to an angular speed in deg/s.
        wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
        # Convert from deg/s to rad/s.
        wheel_radps = wheel_degps * (np.pi / 180.0)
        # Compute each wheel’s linear speed (m/s) from its angular speed.
        wheel_linear_speeds = wheel_radps * wheel_radius

        # Define the wheel mounting angles (defined from y axis cw)
        angles = np.radians(np.array([300, 180, 60]))
        m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])

        # Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
        m_inv = np.linalg.inv(m)
        velocity_vector = m_inv.dot(wheel_linear_speeds)
        x_cmd, y_cmd, theta_rad = velocity_vector
        theta_cmd = theta_rad * (180.0 / np.pi)
        return (x_cmd, y_cmd, theta_cmd)


class LeKiwi:
    def __init__(self, motor_bus):
        """
        Initializes the LeKiwi with Feetech motors bus.
        """
        self.motor_bus = motor_bus
        self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]

        # Initialize motors in velocity mode.
        self.motor_bus.write("Lock", 0)
        self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
        self.motor_bus.write("Lock", 1)
        print("Motors set to velocity mode.")

    def read_velocity(self):
        """
        Reads the raw speeds for all wheels. Returns a dictionary with motor names:
        """
        raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
        return {
            "left_wheel": int(raw_speeds[0]),
            "back_wheel": int(raw_speeds[1]),
            "right_wheel": int(raw_speeds[2]),
        }

    def set_velocity(self, command_speeds):
        """
        Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
        The order of speeds must correspond to self.motor_ids.
        """
        self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)

    def stop(self):
        """Stops the robot by setting all motor speeds to zero."""
        self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
        print("Motors stopped.")