Spaces:
Running
Running
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import enum | |
import logging | |
import math | |
import time | |
import traceback | |
from copy import deepcopy | |
import numpy as np | |
import tqdm | |
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig | |
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError | |
from lerobot.common.utils.utils import capture_timestamp_utc | |
PROTOCOL_VERSION = 0 | |
BAUDRATE = 1_000_000 | |
TIMEOUT_MS = 1000 | |
MAX_ID_RANGE = 252 | |
# The following bounds define the lower and upper joints range (after calibration). | |
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees | |
# which corresponds to a half rotation on the left and half rotation on the right. | |
# Some joints might require higher range, so we allow up to [-270, 270] degrees until | |
# an error is raised. | |
LOWER_BOUND_DEGREE = -270 | |
UPPER_BOUND_DEGREE = 270 | |
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper), | |
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully | |
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to | |
# [-10, 110] until an error is raised. | |
LOWER_BOUND_LINEAR = -10 | |
UPPER_BOUND_LINEAR = 110 | |
HALF_TURN_DEGREE = 180 | |
# See this link for STS3215 Memory Table: | |
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true | |
# data_name: (address, size_byte) | |
SCS_SERIES_CONTROL_TABLE = { | |
"Model": (3, 2), | |
"ID": (5, 1), | |
"Baud_Rate": (6, 1), | |
"Return_Delay": (7, 1), | |
"Response_Status_Level": (8, 1), | |
"Min_Angle_Limit": (9, 2), | |
"Max_Angle_Limit": (11, 2), | |
"Max_Temperature_Limit": (13, 1), | |
"Max_Voltage_Limit": (14, 1), | |
"Min_Voltage_Limit": (15, 1), | |
"Max_Torque_Limit": (16, 2), | |
"Phase": (18, 1), | |
"Unloading_Condition": (19, 1), | |
"LED_Alarm_Condition": (20, 1), | |
"P_Coefficient": (21, 1), | |
"D_Coefficient": (22, 1), | |
"I_Coefficient": (23, 1), | |
"Minimum_Startup_Force": (24, 2), | |
"CW_Dead_Zone": (26, 1), | |
"CCW_Dead_Zone": (27, 1), | |
"Protection_Current": (28, 2), | |
"Angular_Resolution": (30, 1), | |
"Offset": (31, 2), | |
"Mode": (33, 1), | |
"Protective_Torque": (34, 1), | |
"Protection_Time": (35, 1), | |
"Overload_Torque": (36, 1), | |
"Speed_closed_loop_P_proportional_coefficient": (37, 1), | |
"Over_Current_Protection_Time": (38, 1), | |
"Velocity_closed_loop_I_integral_coefficient": (39, 1), | |
"Torque_Enable": (40, 1), | |
"Acceleration": (41, 1), | |
"Goal_Position": (42, 2), | |
"Goal_Time": (44, 2), | |
"Goal_Speed": (46, 2), | |
"Torque_Limit": (48, 2), | |
"Lock": (55, 1), | |
"Present_Position": (56, 2), | |
"Present_Speed": (58, 2), | |
"Present_Load": (60, 2), | |
"Present_Voltage": (62, 1), | |
"Present_Temperature": (63, 1), | |
"Status": (65, 1), | |
"Moving": (66, 1), | |
"Present_Current": (69, 2), | |
# Not in the Memory Table | |
"Maximum_Acceleration": (85, 2), | |
} | |
SCS_SERIES_BAUDRATE_TABLE = { | |
0: 1_000_000, | |
1: 500_000, | |
2: 250_000, | |
3: 128_000, | |
4: 115_200, | |
5: 57_600, | |
6: 38_400, | |
7: 19_200, | |
} | |
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"] | |
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"] | |
MODEL_CONTROL_TABLE = { | |
"scs_series": SCS_SERIES_CONTROL_TABLE, | |
"sts3215": SCS_SERIES_CONTROL_TABLE, | |
} | |
MODEL_RESOLUTION = { | |
"scs_series": 4096, | |
"sts3215": 4096, | |
} | |
MODEL_BAUDRATE_TABLE = { | |
"scs_series": SCS_SERIES_BAUDRATE_TABLE, | |
"sts3215": SCS_SERIES_BAUDRATE_TABLE, | |
} | |
# High number of retries is needed for feetech compared to dynamixel motors. | |
NUM_READ_RETRY = 20 | |
NUM_WRITE_RETRY = 20 | |
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray: | |
"""This function converts the degree range to the step range for indicating motors rotation. | |
It assumes a motor achieves a full rotation by going from -180 degree position to +180. | |
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation. | |
""" | |
resolutions = [MODEL_RESOLUTION[model] for model in models] | |
steps = degrees / 180 * np.array(resolutions) / 2 | |
steps = steps.astype(int) | |
return steps | |
def convert_to_bytes(value, bytes, mock=False): | |
if mock: | |
return value | |
import scservo_sdk as scs | |
# Note: No need to convert back into unsigned int, since this byte preprocessing | |
# already handles it for us. | |
if bytes == 1: | |
data = [ | |
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)), | |
] | |
elif bytes == 2: | |
data = [ | |
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)), | |
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)), | |
] | |
elif bytes == 4: | |
data = [ | |
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)), | |
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)), | |
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)), | |
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)), | |
] | |
else: | |
raise NotImplementedError( | |
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but " | |
f"{bytes} is provided instead." | |
) | |
return data | |
def get_group_sync_key(data_name, motor_names): | |
group_key = f"{data_name}_" + "_".join(motor_names) | |
return group_key | |
def get_result_name(fn_name, data_name, motor_names): | |
group_key = get_group_sync_key(data_name, motor_names) | |
rslt_name = f"{fn_name}_{group_key}" | |
return rslt_name | |
def get_queue_name(fn_name, data_name, motor_names): | |
group_key = get_group_sync_key(data_name, motor_names) | |
queue_name = f"{fn_name}_{group_key}" | |
return queue_name | |
def get_log_name(var_name, fn_name, data_name, motor_names): | |
group_key = get_group_sync_key(data_name, motor_names) | |
log_name = f"{var_name}_{fn_name}_{group_key}" | |
return log_name | |
def assert_same_address(model_ctrl_table, motor_models, data_name): | |
all_addr = [] | |
all_bytes = [] | |
for model in motor_models: | |
addr, bytes = model_ctrl_table[model][data_name] | |
all_addr.append(addr) | |
all_bytes.append(bytes) | |
if len(set(all_addr)) != 1: | |
raise NotImplementedError( | |
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer." | |
) | |
if len(set(all_bytes)) != 1: | |
raise NotImplementedError( | |
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer." | |
) | |
class TorqueMode(enum.Enum): | |
ENABLED = 1 | |
DISABLED = 0 | |
class DriveMode(enum.Enum): | |
NON_INVERTED = 0 | |
INVERTED = 1 | |
class CalibrationMode(enum.Enum): | |
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180] | |
DEGREE = 0 | |
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100] | |
LINEAR = 1 | |
class JointOutOfRangeError(Exception): | |
def __init__(self, message="Joint is out of range"): | |
self.message = message | |
super().__init__(self.message) | |
class FeetechMotorsBus: | |
""" | |
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on | |
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20). | |
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)). | |
To find the port, you can run our utility script: | |
```bash | |
python lerobot/scripts/find_motors_bus_port.py | |
>>> Finding all available ports for the MotorsBus. | |
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751'] | |
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done. | |
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751. | |
>>> Reconnect the usb cable. | |
``` | |
Example of usage for 1 motor connected to the bus: | |
```python | |
motor_name = "gripper" | |
motor_index = 6 | |
motor_model = "sts3215" | |
config = FeetechMotorsBusConfig( | |
port="/dev/tty.usbmodem575E0031751", | |
motors={motor_name: (motor_index, motor_model)}, | |
) | |
motors_bus = FeetechMotorsBus(config) | |
motors_bus.connect() | |
position = motors_bus.read("Present_Position") | |
# move from a few motor steps as an example | |
few_steps = 30 | |
motors_bus.write("Goal_Position", position + few_steps) | |
# when done, consider disconnecting | |
motors_bus.disconnect() | |
``` | |
""" | |
def __init__( | |
self, | |
config: FeetechMotorsBusConfig, | |
): | |
self.port = config.port | |
self.motors = config.motors | |
self.mock = config.mock | |
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE) | |
self.model_resolution = deepcopy(MODEL_RESOLUTION) | |
self.port_handler = None | |
self.packet_handler = None | |
self.calibration = None | |
self.is_connected = False | |
self.group_readers = {} | |
self.group_writers = {} | |
self.logs = {} | |
self.track_positions = {} | |
def connect(self): | |
if self.is_connected: | |
raise RobotDeviceAlreadyConnectedError( | |
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice." | |
) | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
self.port_handler = scs.PortHandler(self.port) | |
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION) | |
try: | |
if not self.port_handler.openPort(): | |
raise OSError(f"Failed to open port '{self.port}'.") | |
except Exception: | |
traceback.print_exc() | |
print( | |
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n" | |
) | |
raise | |
# Allow to read and write | |
self.is_connected = True | |
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS) | |
def reconnect(self): | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
self.port_handler = scs.PortHandler(self.port) | |
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION) | |
if not self.port_handler.openPort(): | |
raise OSError(f"Failed to open port '{self.port}'.") | |
self.is_connected = True | |
def are_motors_configured(self): | |
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect, | |
# a ConnectionError will be raised anyway. | |
try: | |
return (self.motor_indices == self.read("ID")).all() | |
except ConnectionError as e: | |
print(e) | |
return False | |
def find_motor_indices(self, possible_ids=None, num_retry=2): | |
if possible_ids is None: | |
possible_ids = range(MAX_ID_RANGE) | |
indices = [] | |
for idx in tqdm.tqdm(possible_ids): | |
try: | |
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0] | |
except ConnectionError: | |
continue | |
if idx != present_idx: | |
# sanity check | |
raise OSError( | |
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged." | |
) | |
indices.append(idx) | |
return indices | |
def set_bus_baudrate(self, baudrate): | |
present_bus_baudrate = self.port_handler.getBaudRate() | |
if present_bus_baudrate != baudrate: | |
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.") | |
self.port_handler.setBaudRate(baudrate) | |
if self.port_handler.getBaudRate() != baudrate: | |
raise OSError("Failed to write bus baud rate.") | |
def motor_names(self) -> list[str]: | |
return list(self.motors.keys()) | |
def motor_models(self) -> list[str]: | |
return [model for _, model in self.motors.values()] | |
def motor_indices(self) -> list[int]: | |
return [idx for idx, _ in self.motors.values()] | |
def set_calibration(self, calibration: dict[str, list]): | |
self.calibration = calibration | |
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None): | |
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct. | |
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`. | |
""" | |
try: | |
values = self.apply_calibration(values, motor_names) | |
except JointOutOfRangeError as e: | |
print(e) | |
self.autocorrect_calibration(values, motor_names) | |
values = self.apply_calibration(values, motor_names) | |
return values | |
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None): | |
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with | |
a "zero position" at 0 degree. | |
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor | |
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range. | |
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation | |
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and | |
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830, | |
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor. | |
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work | |
in the centered nominal degree range ]-180, 180[. | |
""" | |
if motor_names is None: | |
motor_names = self.motor_names | |
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range | |
values = values.astype(np.float32) | |
for i, name in enumerate(motor_names): | |
calib_idx = self.calibration["motor_names"].index(name) | |
calib_mode = self.calibration["calib_mode"][calib_idx] | |
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE: | |
drive_mode = self.calibration["drive_mode"][calib_idx] | |
homing_offset = self.calibration["homing_offset"][calib_idx] | |
_, model = self.motors[name] | |
resolution = self.model_resolution[model] | |
# Update direction of rotation of the motor to match between leader and follower. | |
# In fact, the motor of the leader for a given joint can be assembled in an | |
# opposite direction in term of rotation than the motor of the follower on the same joint. | |
if drive_mode: | |
values[i] *= -1 | |
# Convert from range [-2**31, 2**31[ to | |
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[) | |
values[i] += homing_offset | |
# Convert from range ]-resolution, resolution[ to | |
# universal float32 centered degree range ]-180, 180[ | |
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE | |
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE): | |
raise JointOutOfRangeError( | |
f"Wrong motor position range detected for {name}. " | |
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), " | |
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, " | |
f"but present value is {values[i]} degree. " | |
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. " | |
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`" | |
) | |
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR: | |
start_pos = self.calibration["start_pos"][calib_idx] | |
end_pos = self.calibration["end_pos"][calib_idx] | |
# Rescale the present position to a nominal range [0, 100] %, | |
# useful for joints with linear motions like Aloha gripper | |
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100 | |
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR): | |
raise JointOutOfRangeError( | |
f"Wrong motor position range detected for {name}. " | |
f"Expected to be in nominal range of [0, 100] % (a full linear translation), " | |
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, " | |
f"but present value is {values[i]} %. " | |
"This might be due to a cable connection issue creating an artificial jump in motor values. " | |
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`" | |
) | |
return values | |
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None): | |
"""This function automatically detects issues with values of motors after calibration, and correct for these issues. | |
Some motors might have values outside of expected maximum bounds after calibration. | |
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given | |
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position. | |
Known issues: | |
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors. | |
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha). | |
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration | |
or by human error during manual calibration. | |
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn. | |
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`, | |
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue. | |
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096. | |
""" | |
if motor_names is None: | |
motor_names = self.motor_names | |
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range | |
values = values.astype(np.float32) | |
for i, name in enumerate(motor_names): | |
calib_idx = self.calibration["motor_names"].index(name) | |
calib_mode = self.calibration["calib_mode"][calib_idx] | |
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE: | |
drive_mode = self.calibration["drive_mode"][calib_idx] | |
homing_offset = self.calibration["homing_offset"][calib_idx] | |
_, model = self.motors[name] | |
resolution = self.model_resolution[model] | |
if drive_mode: | |
values[i] *= -1 | |
# Convert from initial range to range [-180, 180] degrees | |
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE | |
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE) | |
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees | |
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE | |
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE | |
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution | |
low_factor = ( | |
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset | |
) / resolution | |
upp_factor = ( | |
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset | |
) / resolution | |
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR: | |
start_pos = self.calibration["start_pos"][calib_idx] | |
end_pos = self.calibration["end_pos"][calib_idx] | |
# Convert from initial range to range [0, 100] in % | |
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100 | |
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR) | |
# Solve this inequality to find the factor to shift the range into [0, 100] % | |
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100 | |
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 | |
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100 | |
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution | |
low_factor = (start_pos - values[i]) / resolution | |
upp_factor = (end_pos - values[i]) / resolution | |
if not in_range: | |
# Get first integer between the two bounds | |
if low_factor < upp_factor: | |
factor = math.ceil(low_factor) | |
if factor > upp_factor: | |
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]") | |
else: | |
factor = math.ceil(upp_factor) | |
if factor > low_factor: | |
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]") | |
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE: | |
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees" | |
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees" | |
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR: | |
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %" | |
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %" | |
logging.warning( | |
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, " | |
f"from '{out_of_range_str}' to '{in_range_str}'." | |
) | |
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096. | |
self.calibration["homing_offset"][calib_idx] += resolution * factor | |
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None): | |
"""Inverse of `apply_calibration`.""" | |
if motor_names is None: | |
motor_names = self.motor_names | |
for i, name in enumerate(motor_names): | |
calib_idx = self.calibration["motor_names"].index(name) | |
calib_mode = self.calibration["calib_mode"][calib_idx] | |
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE: | |
drive_mode = self.calibration["drive_mode"][calib_idx] | |
homing_offset = self.calibration["homing_offset"][calib_idx] | |
_, model = self.motors[name] | |
resolution = self.model_resolution[model] | |
# Convert from nominal 0-centered degree range [-180, 180] to | |
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096) | |
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2) | |
# Subtract the homing offsets to come back to actual motor range of values | |
# which can be arbitrary. | |
values[i] -= homing_offset | |
# Remove drive mode, which is the rotation direction of the motor, to come back to | |
# actual motor rotation direction which can be arbitrary. | |
if drive_mode: | |
values[i] *= -1 | |
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR: | |
start_pos = self.calibration["start_pos"][calib_idx] | |
end_pos = self.calibration["end_pos"][calib_idx] | |
# Convert from nominal lnear range of [0, 100] % to | |
# actual motor range of values which can be arbitrary. | |
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos | |
values = np.round(values).astype(np.int32) | |
return values | |
def avoid_rotation_reset(self, values, motor_names, data_name): | |
if data_name not in self.track_positions: | |
self.track_positions[data_name] = { | |
"prev": [None] * len(self.motor_names), | |
# Assume False at initialization | |
"below_zero": [False] * len(self.motor_names), | |
"above_max": [False] * len(self.motor_names), | |
} | |
track = self.track_positions[data_name] | |
if motor_names is None: | |
motor_names = self.motor_names | |
for i, name in enumerate(motor_names): | |
idx = self.motor_names.index(name) | |
if track["prev"][idx] is None: | |
track["prev"][idx] = values[i] | |
continue | |
# Detect a full rotation occurred | |
if abs(track["prev"][idx] - values[i]) > 2048: | |
# Position went below 0 and got reset to 4095 | |
if track["prev"][idx] < values[i]: | |
# So we set negative value by adding a full rotation | |
values[i] -= 4096 | |
# Position went above 4095 and got reset to 0 | |
elif track["prev"][idx] > values[i]: | |
# So we add a full rotation | |
values[i] += 4096 | |
track["prev"][idx] = values[i] | |
return values | |
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY): | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
return_list = True | |
if not isinstance(motor_ids, list): | |
return_list = False | |
motor_ids = [motor_ids] | |
assert_same_address(self.model_ctrl_table, self.motor_models, data_name) | |
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name] | |
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes) | |
for idx in motor_ids: | |
group.addParam(idx) | |
for _ in range(num_retry): | |
comm = group.txRxPacket() | |
if comm == scs.COMM_SUCCESS: | |
break | |
if comm != scs.COMM_SUCCESS: | |
raise ConnectionError( | |
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: " | |
f"{self.packet_handler.getTxRxResult(comm)}" | |
) | |
values = [] | |
for idx in motor_ids: | |
value = group.getData(idx, addr, bytes) | |
values.append(value) | |
if return_list: | |
return values | |
else: | |
return values[0] | |
def read(self, data_name, motor_names: str | list[str] | None = None): | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError( | |
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`." | |
) | |
start_time = time.perf_counter() | |
if motor_names is None: | |
motor_names = self.motor_names | |
if isinstance(motor_names, str): | |
motor_names = [motor_names] | |
motor_ids = [] | |
models = [] | |
for name in motor_names: | |
motor_idx, model = self.motors[name] | |
motor_ids.append(motor_idx) | |
models.append(model) | |
assert_same_address(self.model_ctrl_table, models, data_name) | |
addr, bytes = self.model_ctrl_table[model][data_name] | |
group_key = get_group_sync_key(data_name, motor_names) | |
if data_name not in self.group_readers: | |
# Very Important to flush the buffer! | |
self.port_handler.ser.reset_output_buffer() | |
self.port_handler.ser.reset_input_buffer() | |
# create new group reader | |
self.group_readers[group_key] = scs.GroupSyncRead( | |
self.port_handler, self.packet_handler, addr, bytes | |
) | |
for idx in motor_ids: | |
self.group_readers[group_key].addParam(idx) | |
for _ in range(NUM_READ_RETRY): | |
comm = self.group_readers[group_key].txRxPacket() | |
if comm == scs.COMM_SUCCESS: | |
break | |
if comm != scs.COMM_SUCCESS: | |
raise ConnectionError( | |
f"Read failed due to communication error on port {self.port} for group_key {group_key}: " | |
f"{self.packet_handler.getTxRxResult(comm)}" | |
) | |
values = [] | |
for idx in motor_ids: | |
value = self.group_readers[group_key].getData(idx, addr, bytes) | |
values.append(value) | |
values = np.array(values) | |
# Convert to signed int to use range [-2048, 2048] for our motor positions. | |
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED: | |
values = values.astype(np.int32) | |
if data_name in CALIBRATION_REQUIRED: | |
values = self.avoid_rotation_reset(values, motor_names, data_name) | |
if data_name in CALIBRATION_REQUIRED and self.calibration is not None: | |
values = self.apply_calibration_autocorrect(values, motor_names) | |
# log the number of seconds it took to read the data from the motors | |
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names) | |
self.logs[delta_ts_name] = time.perf_counter() - start_time | |
# log the utc time at which the data was received | |
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names) | |
self.logs[ts_utc_name] = capture_timestamp_utc() | |
return values | |
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY): | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
if not isinstance(motor_ids, list): | |
motor_ids = [motor_ids] | |
if not isinstance(values, list): | |
values = [values] | |
assert_same_address(self.model_ctrl_table, motor_models, data_name) | |
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name] | |
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes) | |
for idx, value in zip(motor_ids, values, strict=True): | |
data = convert_to_bytes(value, bytes, self.mock) | |
group.addParam(idx, data) | |
for _ in range(num_retry): | |
comm = group.txPacket() | |
if comm == scs.COMM_SUCCESS: | |
break | |
if comm != scs.COMM_SUCCESS: | |
raise ConnectionError( | |
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: " | |
f"{self.packet_handler.getTxRxResult(comm)}" | |
) | |
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None): | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError( | |
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`." | |
) | |
start_time = time.perf_counter() | |
if self.mock: | |
import lerobot.common.mocks.motors.mock_scservo_sdk as scs | |
else: | |
import scservo_sdk as scs | |
if motor_names is None: | |
motor_names = self.motor_names | |
if isinstance(motor_names, str): | |
motor_names = [motor_names] | |
if isinstance(values, (int, float, np.integer)): | |
values = [int(values)] * len(motor_names) | |
values = np.array(values) | |
motor_ids = [] | |
models = [] | |
for name in motor_names: | |
motor_idx, model = self.motors[name] | |
motor_ids.append(motor_idx) | |
models.append(model) | |
if data_name in CALIBRATION_REQUIRED and self.calibration is not None: | |
values = self.revert_calibration(values, motor_names) | |
values = values.tolist() | |
assert_same_address(self.model_ctrl_table, models, data_name) | |
addr, bytes = self.model_ctrl_table[model][data_name] | |
group_key = get_group_sync_key(data_name, motor_names) | |
init_group = data_name not in self.group_readers | |
if init_group: | |
self.group_writers[group_key] = scs.GroupSyncWrite( | |
self.port_handler, self.packet_handler, addr, bytes | |
) | |
for idx, value in zip(motor_ids, values, strict=True): | |
data = convert_to_bytes(value, bytes, self.mock) | |
if init_group: | |
self.group_writers[group_key].addParam(idx, data) | |
else: | |
self.group_writers[group_key].changeParam(idx, data) | |
comm = self.group_writers[group_key].txPacket() | |
if comm != scs.COMM_SUCCESS: | |
raise ConnectionError( | |
f"Write failed due to communication error on port {self.port} for group_key {group_key}: " | |
f"{self.packet_handler.getTxRxResult(comm)}" | |
) | |
# log the number of seconds it took to write the data to the motors | |
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names) | |
self.logs[delta_ts_name] = time.perf_counter() - start_time | |
# TODO(rcadene): should we log the time before sending the write command? | |
# log the utc time when the write has been completed | |
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names) | |
self.logs[ts_utc_name] = capture_timestamp_utc() | |
def disconnect(self): | |
if not self.is_connected: | |
raise RobotDeviceNotConnectedError( | |
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first." | |
) | |
if self.port_handler is not None: | |
self.port_handler.closePort() | |
self.port_handler = None | |
self.packet_handler = None | |
self.group_readers = {} | |
self.group_writers = {} | |
self.is_connected = False | |
def __del__(self): | |
if getattr(self, "is_connected", False): | |
self.disconnect() | |