File size: 37,080 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import enum
import logging
import math
import time
import traceback
from copy import deepcopy

import numpy as np
import tqdm

from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc

PROTOCOL_VERSION = 0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000

MAX_ID_RANGE = 252

# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110

HALF_TURN_DEGREE = 180


# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
SCS_SERIES_CONTROL_TABLE = {
    "Model": (3, 2),
    "ID": (5, 1),
    "Baud_Rate": (6, 1),
    "Return_Delay": (7, 1),
    "Response_Status_Level": (8, 1),
    "Min_Angle_Limit": (9, 2),
    "Max_Angle_Limit": (11, 2),
    "Max_Temperature_Limit": (13, 1),
    "Max_Voltage_Limit": (14, 1),
    "Min_Voltage_Limit": (15, 1),
    "Max_Torque_Limit": (16, 2),
    "Phase": (18, 1),
    "Unloading_Condition": (19, 1),
    "LED_Alarm_Condition": (20, 1),
    "P_Coefficient": (21, 1),
    "D_Coefficient": (22, 1),
    "I_Coefficient": (23, 1),
    "Minimum_Startup_Force": (24, 2),
    "CW_Dead_Zone": (26, 1),
    "CCW_Dead_Zone": (27, 1),
    "Protection_Current": (28, 2),
    "Angular_Resolution": (30, 1),
    "Offset": (31, 2),
    "Mode": (33, 1),
    "Protective_Torque": (34, 1),
    "Protection_Time": (35, 1),
    "Overload_Torque": (36, 1),
    "Speed_closed_loop_P_proportional_coefficient": (37, 1),
    "Over_Current_Protection_Time": (38, 1),
    "Velocity_closed_loop_I_integral_coefficient": (39, 1),
    "Torque_Enable": (40, 1),
    "Acceleration": (41, 1),
    "Goal_Position": (42, 2),
    "Goal_Time": (44, 2),
    "Goal_Speed": (46, 2),
    "Torque_Limit": (48, 2),
    "Lock": (55, 1),
    "Present_Position": (56, 2),
    "Present_Speed": (58, 2),
    "Present_Load": (60, 2),
    "Present_Voltage": (62, 1),
    "Present_Temperature": (63, 1),
    "Status": (65, 1),
    "Moving": (66, 1),
    "Present_Current": (69, 2),
    # Not in the Memory Table
    "Maximum_Acceleration": (85, 2),
}

SCS_SERIES_BAUDRATE_TABLE = {
    0: 1_000_000,
    1: 500_000,
    2: 250_000,
    3: 128_000,
    4: 115_200,
    5: 57_600,
    6: 38_400,
    7: 19_200,
}

CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]


MODEL_CONTROL_TABLE = {
    "scs_series": SCS_SERIES_CONTROL_TABLE,
    "sts3215": SCS_SERIES_CONTROL_TABLE,
}

MODEL_RESOLUTION = {
    "scs_series": 4096,
    "sts3215": 4096,
}

MODEL_BAUDRATE_TABLE = {
    "scs_series": SCS_SERIES_BAUDRATE_TABLE,
    "sts3215": SCS_SERIES_BAUDRATE_TABLE,
}

# High number of retries is needed for feetech compared to dynamixel motors.
NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20


def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
    """This function converts the degree range to the step range for indicating motors rotation.
    It assumes a motor achieves a full rotation by going from -180 degree position to +180.
    The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
    """
    resolutions = [MODEL_RESOLUTION[model] for model in models]
    steps = degrees / 180 * np.array(resolutions) / 2
    steps = steps.astype(int)
    return steps


def convert_to_bytes(value, bytes, mock=False):
    if mock:
        return value

    import scservo_sdk as scs

    # Note: No need to convert back into unsigned int, since this byte preprocessing
    # already handles it for us.
    if bytes == 1:
        data = [
            scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
        ]
    elif bytes == 2:
        data = [
            scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
            scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
        ]
    elif bytes == 4:
        data = [
            scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
            scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
            scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
            scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
        ]
    else:
        raise NotImplementedError(
            f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
            f"{bytes} is provided instead."
        )
    return data


def get_group_sync_key(data_name, motor_names):
    group_key = f"{data_name}_" + "_".join(motor_names)
    return group_key


def get_result_name(fn_name, data_name, motor_names):
    group_key = get_group_sync_key(data_name, motor_names)
    rslt_name = f"{fn_name}_{group_key}"
    return rslt_name


def get_queue_name(fn_name, data_name, motor_names):
    group_key = get_group_sync_key(data_name, motor_names)
    queue_name = f"{fn_name}_{group_key}"
    return queue_name


def get_log_name(var_name, fn_name, data_name, motor_names):
    group_key = get_group_sync_key(data_name, motor_names)
    log_name = f"{var_name}_{fn_name}_{group_key}"
    return log_name


def assert_same_address(model_ctrl_table, motor_models, data_name):
    all_addr = []
    all_bytes = []
    for model in motor_models:
        addr, bytes = model_ctrl_table[model][data_name]
        all_addr.append(addr)
        all_bytes.append(bytes)

    if len(set(all_addr)) != 1:
        raise NotImplementedError(
            f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
        )

    if len(set(all_bytes)) != 1:
        raise NotImplementedError(
            f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
        )


class TorqueMode(enum.Enum):
    ENABLED = 1
    DISABLED = 0


class DriveMode(enum.Enum):
    NON_INVERTED = 0
    INVERTED = 1


class CalibrationMode(enum.Enum):
    # Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
    DEGREE = 0
    # Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
    LINEAR = 1


class JointOutOfRangeError(Exception):
    def __init__(self, message="Joint is out of range"):
        self.message = message
        super().__init__(self.message)


class FeetechMotorsBus:
    """
    The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
    the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).

    A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
    To find the port, you can run our utility script:
    ```bash
    python lerobot/scripts/find_motors_bus_port.py
    >>> Finding all available ports for the MotorsBus.
    >>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
    >>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
    >>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
    >>> Reconnect the usb cable.
    ```

    Example of usage for 1 motor connected to the bus:
    ```python
    motor_name = "gripper"
    motor_index = 6
    motor_model = "sts3215"

    config = FeetechMotorsBusConfig(
        port="/dev/tty.usbmodem575E0031751",
        motors={motor_name: (motor_index, motor_model)},
    )
    motors_bus = FeetechMotorsBus(config)
    motors_bus.connect()

    position = motors_bus.read("Present_Position")

    # move from a few motor steps as an example
    few_steps = 30
    motors_bus.write("Goal_Position", position + few_steps)

    # when done, consider disconnecting
    motors_bus.disconnect()
    ```
    """

    def __init__(
        self,
        config: FeetechMotorsBusConfig,
    ):
        self.port = config.port
        self.motors = config.motors
        self.mock = config.mock

        self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
        self.model_resolution = deepcopy(MODEL_RESOLUTION)

        self.port_handler = None
        self.packet_handler = None
        self.calibration = None
        self.is_connected = False
        self.group_readers = {}
        self.group_writers = {}
        self.logs = {}

        self.track_positions = {}

    def connect(self):
        if self.is_connected:
            raise RobotDeviceAlreadyConnectedError(
                f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
            )

        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        self.port_handler = scs.PortHandler(self.port)
        self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)

        try:
            if not self.port_handler.openPort():
                raise OSError(f"Failed to open port '{self.port}'.")
        except Exception:
            traceback.print_exc()
            print(
                "\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
            )
            raise

        # Allow to read and write
        self.is_connected = True

        self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)

    def reconnect(self):
        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        self.port_handler = scs.PortHandler(self.port)
        self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)

        if not self.port_handler.openPort():
            raise OSError(f"Failed to open port '{self.port}'.")

        self.is_connected = True

    def are_motors_configured(self):
        # Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
        # a ConnectionError will be raised anyway.
        try:
            return (self.motor_indices == self.read("ID")).all()
        except ConnectionError as e:
            print(e)
            return False

    def find_motor_indices(self, possible_ids=None, num_retry=2):
        if possible_ids is None:
            possible_ids = range(MAX_ID_RANGE)

        indices = []
        for idx in tqdm.tqdm(possible_ids):
            try:
                present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
            except ConnectionError:
                continue

            if idx != present_idx:
                # sanity check
                raise OSError(
                    "Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
                )
            indices.append(idx)

        return indices

    def set_bus_baudrate(self, baudrate):
        present_bus_baudrate = self.port_handler.getBaudRate()
        if present_bus_baudrate != baudrate:
            print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
            self.port_handler.setBaudRate(baudrate)

            if self.port_handler.getBaudRate() != baudrate:
                raise OSError("Failed to write bus baud rate.")

    @property
    def motor_names(self) -> list[str]:
        return list(self.motors.keys())

    @property
    def motor_models(self) -> list[str]:
        return [model for _, model in self.motors.values()]

    @property
    def motor_indices(self) -> list[int]:
        return [idx for idx, _ in self.motors.values()]

    def set_calibration(self, calibration: dict[str, list]):
        self.calibration = calibration

    def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
        """This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.

        For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
        """
        try:
            values = self.apply_calibration(values, motor_names)
        except JointOutOfRangeError as e:
            print(e)
            self.autocorrect_calibration(values, motor_names)
            values = self.apply_calibration(values, motor_names)
        return values

    def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
        """Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
        a "zero position" at 0 degree.

        Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
        rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.

        Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
        when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
        at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
        or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
        To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
        in the centered nominal degree range ]-180, 180[.
        """
        if motor_names is None:
            motor_names = self.motor_names

        # Convert from unsigned int32 original range [0, 2**32] to signed float32 range
        values = values.astype(np.float32)

        for i, name in enumerate(motor_names):
            calib_idx = self.calibration["motor_names"].index(name)
            calib_mode = self.calibration["calib_mode"][calib_idx]

            if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
                drive_mode = self.calibration["drive_mode"][calib_idx]
                homing_offset = self.calibration["homing_offset"][calib_idx]
                _, model = self.motors[name]
                resolution = self.model_resolution[model]

                # Update direction of rotation of the motor to match between leader and follower.
                # In fact, the motor of the leader for a given joint can be assembled in an
                # opposite direction in term of rotation than the motor of the follower on the same joint.
                if drive_mode:
                    values[i] *= -1

                # Convert from range [-2**31, 2**31[ to
                # nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
                values[i] += homing_offset

                # Convert from range ]-resolution, resolution[ to
                # universal float32 centered degree range ]-180, 180[
                values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE

                if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
                    raise JointOutOfRangeError(
                        f"Wrong motor position range detected for {name}. "
                        f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
                        f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
                        f"but present value is {values[i]} degree. "
                        "This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
                        "You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
                    )

            elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
                start_pos = self.calibration["start_pos"][calib_idx]
                end_pos = self.calibration["end_pos"][calib_idx]

                # Rescale the present position to a nominal range [0, 100] %,
                # useful for joints with linear motions like Aloha gripper
                values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100

                if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
                    raise JointOutOfRangeError(
                        f"Wrong motor position range detected for {name}. "
                        f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
                        f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
                        f"but present value is {values[i]} %. "
                        "This might be due to a cable connection issue creating an artificial jump in motor values. "
                        "You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
                    )

        return values

    def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
        """This function automatically detects issues with values of motors after calibration, and correct for these issues.

        Some motors might have values outside of expected maximum bounds after calibration.
        For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
        a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.

        Known issues:
        #1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
        #2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
        #3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
            or by human error during manual calibration.

        Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
        Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
        that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.

        Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
        """
        if motor_names is None:
            motor_names = self.motor_names

        # Convert from unsigned int32 original range [0, 2**32] to signed float32 range
        values = values.astype(np.float32)

        for i, name in enumerate(motor_names):
            calib_idx = self.calibration["motor_names"].index(name)
            calib_mode = self.calibration["calib_mode"][calib_idx]

            if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
                drive_mode = self.calibration["drive_mode"][calib_idx]
                homing_offset = self.calibration["homing_offset"][calib_idx]
                _, model = self.motors[name]
                resolution = self.model_resolution[model]

                if drive_mode:
                    values[i] *= -1

                # Convert from initial range to range [-180, 180] degrees
                calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
                in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)

                # Solve this inequality to find the factor to shift the range into [-180, 180] degrees
                # values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
                # - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
                # (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
                low_factor = (
                    -HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
                ) / resolution
                upp_factor = (
                    HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
                ) / resolution

            elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
                start_pos = self.calibration["start_pos"][calib_idx]
                end_pos = self.calibration["end_pos"][calib_idx]

                # Convert from initial range to range [0, 100] in %
                calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
                in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)

                # Solve this inequality to find the factor to shift the range into [0, 100] %
                # values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
                # values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
                # 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
                # (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
                low_factor = (start_pos - values[i]) / resolution
                upp_factor = (end_pos - values[i]) / resolution

            if not in_range:
                # Get first integer between the two bounds
                if low_factor < upp_factor:
                    factor = math.ceil(low_factor)

                    if factor > upp_factor:
                        raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
                else:
                    factor = math.ceil(upp_factor)

                    if factor > low_factor:
                        raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")

                if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
                    out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
                    in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
                elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
                    out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
                    in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"

                logging.warning(
                    f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
                    f"from '{out_of_range_str}' to '{in_range_str}'."
                )

                # A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
                self.calibration["homing_offset"][calib_idx] += resolution * factor

    def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
        """Inverse of `apply_calibration`."""
        if motor_names is None:
            motor_names = self.motor_names

        for i, name in enumerate(motor_names):
            calib_idx = self.calibration["motor_names"].index(name)
            calib_mode = self.calibration["calib_mode"][calib_idx]

            if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
                drive_mode = self.calibration["drive_mode"][calib_idx]
                homing_offset = self.calibration["homing_offset"][calib_idx]
                _, model = self.motors[name]
                resolution = self.model_resolution[model]

                # Convert from nominal 0-centered degree range [-180, 180] to
                # 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
                values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)

                # Subtract the homing offsets to come back to actual motor range of values
                # which can be arbitrary.
                values[i] -= homing_offset

                # Remove drive mode, which is the rotation direction of the motor, to come back to
                # actual motor rotation direction which can be arbitrary.
                if drive_mode:
                    values[i] *= -1

            elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
                start_pos = self.calibration["start_pos"][calib_idx]
                end_pos = self.calibration["end_pos"][calib_idx]

                # Convert from nominal lnear range of [0, 100] % to
                # actual motor range of values which can be arbitrary.
                values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos

        values = np.round(values).astype(np.int32)
        return values

    def avoid_rotation_reset(self, values, motor_names, data_name):
        if data_name not in self.track_positions:
            self.track_positions[data_name] = {
                "prev": [None] * len(self.motor_names),
                # Assume False at initialization
                "below_zero": [False] * len(self.motor_names),
                "above_max": [False] * len(self.motor_names),
            }

        track = self.track_positions[data_name]

        if motor_names is None:
            motor_names = self.motor_names

        for i, name in enumerate(motor_names):
            idx = self.motor_names.index(name)

            if track["prev"][idx] is None:
                track["prev"][idx] = values[i]
                continue

            # Detect a full rotation occurred
            if abs(track["prev"][idx] - values[i]) > 2048:
                # Position went below 0 and got reset to 4095
                if track["prev"][idx] < values[i]:
                    # So we set negative value by adding a full rotation
                    values[i] -= 4096

                # Position went above 4095 and got reset to 0
                elif track["prev"][idx] > values[i]:
                    # So we add a full rotation
                    values[i] += 4096

            track["prev"][idx] = values[i]

        return values

    def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        return_list = True
        if not isinstance(motor_ids, list):
            return_list = False
            motor_ids = [motor_ids]

        assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
        addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
        group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
        for idx in motor_ids:
            group.addParam(idx)

        for _ in range(num_retry):
            comm = group.txRxPacket()
            if comm == scs.COMM_SUCCESS:
                break

        if comm != scs.COMM_SUCCESS:
            raise ConnectionError(
                f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
                f"{self.packet_handler.getTxRxResult(comm)}"
            )

        values = []
        for idx in motor_ids:
            value = group.getData(idx, addr, bytes)
            values.append(value)

        if return_list:
            return values
        else:
            return values[0]

    def read(self, data_name, motor_names: str | list[str] | None = None):
        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        if not self.is_connected:
            raise RobotDeviceNotConnectedError(
                f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
            )

        start_time = time.perf_counter()

        if motor_names is None:
            motor_names = self.motor_names

        if isinstance(motor_names, str):
            motor_names = [motor_names]

        motor_ids = []
        models = []
        for name in motor_names:
            motor_idx, model = self.motors[name]
            motor_ids.append(motor_idx)
            models.append(model)

        assert_same_address(self.model_ctrl_table, models, data_name)
        addr, bytes = self.model_ctrl_table[model][data_name]
        group_key = get_group_sync_key(data_name, motor_names)

        if data_name not in self.group_readers:
            # Very Important to flush the buffer!
            self.port_handler.ser.reset_output_buffer()
            self.port_handler.ser.reset_input_buffer()

            # create new group reader
            self.group_readers[group_key] = scs.GroupSyncRead(
                self.port_handler, self.packet_handler, addr, bytes
            )
            for idx in motor_ids:
                self.group_readers[group_key].addParam(idx)

        for _ in range(NUM_READ_RETRY):
            comm = self.group_readers[group_key].txRxPacket()
            if comm == scs.COMM_SUCCESS:
                break

        if comm != scs.COMM_SUCCESS:
            raise ConnectionError(
                f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
                f"{self.packet_handler.getTxRxResult(comm)}"
            )

        values = []
        for idx in motor_ids:
            value = self.group_readers[group_key].getData(idx, addr, bytes)
            values.append(value)

        values = np.array(values)

        # Convert to signed int to use range [-2048, 2048] for our motor positions.
        if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
            values = values.astype(np.int32)

        if data_name in CALIBRATION_REQUIRED:
            values = self.avoid_rotation_reset(values, motor_names, data_name)

        if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
            values = self.apply_calibration_autocorrect(values, motor_names)

        # log the number of seconds it took to read the data from the motors
        delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
        self.logs[delta_ts_name] = time.perf_counter() - start_time

        # log the utc time at which the data was received
        ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
        self.logs[ts_utc_name] = capture_timestamp_utc()

        return values

    def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        if not isinstance(motor_ids, list):
            motor_ids = [motor_ids]
        if not isinstance(values, list):
            values = [values]

        assert_same_address(self.model_ctrl_table, motor_models, data_name)
        addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
        group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
        for idx, value in zip(motor_ids, values, strict=True):
            data = convert_to_bytes(value, bytes, self.mock)
            group.addParam(idx, data)

        for _ in range(num_retry):
            comm = group.txPacket()
            if comm == scs.COMM_SUCCESS:
                break

        if comm != scs.COMM_SUCCESS:
            raise ConnectionError(
                f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
                f"{self.packet_handler.getTxRxResult(comm)}"
            )

    def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
        if not self.is_connected:
            raise RobotDeviceNotConnectedError(
                f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
            )

        start_time = time.perf_counter()

        if self.mock:
            import lerobot.common.mocks.motors.mock_scservo_sdk as scs
        else:
            import scservo_sdk as scs

        if motor_names is None:
            motor_names = self.motor_names

        if isinstance(motor_names, str):
            motor_names = [motor_names]

        if isinstance(values, (int, float, np.integer)):
            values = [int(values)] * len(motor_names)

        values = np.array(values)

        motor_ids = []
        models = []
        for name in motor_names:
            motor_idx, model = self.motors[name]
            motor_ids.append(motor_idx)
            models.append(model)

        if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
            values = self.revert_calibration(values, motor_names)

        values = values.tolist()

        assert_same_address(self.model_ctrl_table, models, data_name)
        addr, bytes = self.model_ctrl_table[model][data_name]
        group_key = get_group_sync_key(data_name, motor_names)

        init_group = data_name not in self.group_readers
        if init_group:
            self.group_writers[group_key] = scs.GroupSyncWrite(
                self.port_handler, self.packet_handler, addr, bytes
            )

        for idx, value in zip(motor_ids, values, strict=True):
            data = convert_to_bytes(value, bytes, self.mock)
            if init_group:
                self.group_writers[group_key].addParam(idx, data)
            else:
                self.group_writers[group_key].changeParam(idx, data)

        comm = self.group_writers[group_key].txPacket()
        if comm != scs.COMM_SUCCESS:
            raise ConnectionError(
                f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
                f"{self.packet_handler.getTxRxResult(comm)}"
            )

        # log the number of seconds it took to write the data to the motors
        delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
        self.logs[delta_ts_name] = time.perf_counter() - start_time

        # TODO(rcadene): should we log the time before sending the write command?
        # log the utc time when the write has been completed
        ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
        self.logs[ts_utc_name] = capture_timestamp_utc()

    def disconnect(self):
        if not self.is_connected:
            raise RobotDeviceNotConnectedError(
                f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
            )

        if self.port_handler is not None:
            self.port_handler.closePort()
            self.port_handler = None

        self.packet_handler = None
        self.group_readers = {}
        self.group_writers = {}
        self.is_connected = False

    def __del__(self):
        if getattr(self, "is_connected", False):
            self.disconnect()