Spaces:
Running
Running
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
# Search Tool using DuckDuckGo | |
search_tool = DuckDuckGoSearchTool() | |
# Text Summarization Tool | |
def summarize_text(text: str) -> str: | |
"""Summarizes a given text into a concise version. | |
Args: | |
text: The text to be summarized. | |
""" | |
try: | |
api_url = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" | |
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"} | |
response = requests.post(api_url, headers=headers, json={"inputs": text}) | |
summary = response.json()[0]['summary_text'] | |
return summary | |
except Exception as e: | |
return f"Error in summarization: {str(e)}" | |
# Weather Information Tool | |
def get_weather(city: str) -> str: | |
"""Fetches current weather information for a given city. | |
Args: | |
city: Name of the city. | |
""" | |
try: | |
api_key = "YOUR_OPENWEATHERMAP_API_KEY" | |
url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric" | |
response = requests.get(url).json() | |
temp = response["main"]["temp"] | |
weather_desc = response["weather"][0]["description"] | |
return f"The current temperature in {city} is {temp}°C with {weather_desc}." | |
except Exception as e: | |
return f"Error fetching weather data: {str(e)}" | |
# Currency Conversion Tool | |
def convert_currency(amount: float, from_currency: str, to_currency: str) -> str: | |
"""Converts currency based on real-time exchange rates. | |
Args: | |
amount: The amount to be converted. | |
from_currency: The source currency (e.g., 'USD'). | |
to_currency: The target currency (e.g., 'EUR'). | |
""" | |
try: | |
api_url = f"https://api.exchangerate-api.com/v4/latest/{from_currency}" | |
response = requests.get(api_url).json() | |
rate = response["rates"].get(to_currency, None) | |
if rate: | |
converted_amount = amount * rate | |
return f"{amount} {from_currency} is approximately {converted_amount:.2f} {to_currency}." | |
else: | |
return f"Conversion rate for {to_currency} not found." | |
except Exception as e: | |
return f"Error in currency conversion: {str(e)}" | |
# Fun Fact Generator Tool | |
def get_fun_fact() -> str: | |
"""Fetches a random fun fact.""" | |
try: | |
response = requests.get("https://uselessfacts.jsph.pl/random.json?language=en").json() | |
return response["text"] | |
except Exception as e: | |
return f"Error fetching fun fact: {str(e)}" | |
# Text Sentiment Analyzer | |
def analyze_sentiment(text: str) -> str: | |
"""Analyzes the sentiment of a given text (positive, neutral, or negative). | |
Args: | |
text: The text to be analyzed. | |
""" | |
try: | |
api_url = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment" | |
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"} | |
response = requests.post(api_url, headers=headers, json={"inputs": text}) | |
sentiment = response.json()[0][0]['label'] | |
return f"The sentiment of the given text is: {sentiment}" | |
except Exception as e: | |
return f"Error in sentiment analysis: {str(e)}" | |
# Time Zone Tool | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
tz = pytz.timezone(timezone) | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud', | |
custom_role_conversions=None, | |
) | |
# Import tool from Hugging Face Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
# Define Agent with All Tools | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, search_tool, image_generation_tool, summarize_text, get_weather, convert_currency, get_fun_fact, analyze_sentiment, get_current_time_in_timezone], | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() | |