Spaces:
Running
Running
File size: 4,806 Bytes
5f2831a 9b5b26a c19d193 6aae614 9b5b26a 5f2831a 9b5b26a 5f2831a 9b5b26a 5f2831a 9b5b26a 5f2831a 9b5b26a 5f2831a 9b5b26a 8c01ffb 6aae614 e121372 5f2831a 13d500a 8c01ffb 5f2831a 9b5b26a 8c01ffb 861422e 5f2831a 8c01ffb 8fe992b 5f2831a 8c01ffb 861422e 8fe992b 5f2831a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Search Tool using DuckDuckGo
search_tool = DuckDuckGoSearchTool()
# Text Summarization Tool
@tool
def summarize_text(text: str) -> str:
"""Summarizes a given text into a concise version.
Args:
text: The text to be summarized.
"""
try:
api_url = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"}
response = requests.post(api_url, headers=headers, json={"inputs": text})
summary = response.json()[0]['summary_text']
return summary
except Exception as e:
return f"Error in summarization: {str(e)}"
# Weather Information Tool
@tool
def get_weather(city: str) -> str:
"""Fetches current weather information for a given city.
Args:
city: Name of the city.
"""
try:
api_key = "YOUR_OPENWEATHERMAP_API_KEY"
url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
response = requests.get(url).json()
temp = response["main"]["temp"]
weather_desc = response["weather"][0]["description"]
return f"The current temperature in {city} is {temp}°C with {weather_desc}."
except Exception as e:
return f"Error fetching weather data: {str(e)}"
# Currency Conversion Tool
@tool
def convert_currency(amount: float, from_currency: str, to_currency: str) -> str:
"""Converts currency based on real-time exchange rates.
Args:
amount: The amount to be converted.
from_currency: The source currency (e.g., 'USD').
to_currency: The target currency (e.g., 'EUR').
"""
try:
api_url = f"https://api.exchangerate-api.com/v4/latest/{from_currency}"
response = requests.get(api_url).json()
rate = response["rates"].get(to_currency, None)
if rate:
converted_amount = amount * rate
return f"{amount} {from_currency} is approximately {converted_amount:.2f} {to_currency}."
else:
return f"Conversion rate for {to_currency} not found."
except Exception as e:
return f"Error in currency conversion: {str(e)}"
# Fun Fact Generator Tool
@tool
def get_fun_fact() -> str:
"""Fetches a random fun fact."""
try:
response = requests.get("https://uselessfacts.jsph.pl/random.json?language=en").json()
return response["text"]
except Exception as e:
return f"Error fetching fun fact: {str(e)}"
# Text Sentiment Analyzer
@tool
def analyze_sentiment(text: str) -> str:
"""Analyzes the sentiment of a given text (positive, neutral, or negative).
Args:
text: The text to be analyzed.
"""
try:
api_url = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"}
response = requests.post(api_url, headers=headers, json={"inputs": text})
sentiment = response.json()[0][0]['label']
return f"The sentiment of the given text is: {sentiment}"
except Exception as e:
return f"Error in sentiment analysis: {str(e)}"
# Time Zone Tool
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)
# Import tool from Hugging Face Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Define Agent with All Tools
agent = CodeAgent(
model=model,
tools=[final_answer, search_tool, image_generation_tool, summarize_text, get_weather, convert_currency, get_fun_fact, analyze_sentiment, get_current_time_in_timezone],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()
|