File size: 4,806 Bytes
5f2831a
9b5b26a
 
 
c19d193
6aae614
9b5b26a
 
5f2831a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
5f2831a
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
5f2831a
9b5b26a
5f2831a
 
 
 
 
 
 
 
9b5b26a
5f2831a
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
6aae614
e121372
5f2831a
 
 
 
13d500a
8c01ffb
5f2831a
9b5b26a
8c01ffb
861422e
 
5f2831a
 
8c01ffb
8fe992b
5f2831a
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
5f2831a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI

# Search Tool using DuckDuckGo
search_tool = DuckDuckGoSearchTool()

# Text Summarization Tool
@tool
def summarize_text(text: str) -> str:
    """Summarizes a given text into a concise version.
    Args:
        text: The text to be summarized.
    """
    try:
        api_url = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
        headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"}
        response = requests.post(api_url, headers=headers, json={"inputs": text})
        summary = response.json()[0]['summary_text']
        return summary
    except Exception as e:
        return f"Error in summarization: {str(e)}"

# Weather Information Tool
@tool
def get_weather(city: str) -> str:
    """Fetches current weather information for a given city.
    Args:
        city: Name of the city.
    """
    try:
        api_key = "YOUR_OPENWEATHERMAP_API_KEY"
        url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
        response = requests.get(url).json()
        temp = response["main"]["temp"]
        weather_desc = response["weather"][0]["description"]
        return f"The current temperature in {city} is {temp}°C with {weather_desc}."
    except Exception as e:
        return f"Error fetching weather data: {str(e)}"

# Currency Conversion Tool
@tool
def convert_currency(amount: float, from_currency: str, to_currency: str) -> str:
    """Converts currency based on real-time exchange rates.
    Args:
        amount: The amount to be converted.
        from_currency: The source currency (e.g., 'USD').
        to_currency: The target currency (e.g., 'EUR').
    """
    try:
        api_url = f"https://api.exchangerate-api.com/v4/latest/{from_currency}"
        response = requests.get(api_url).json()
        rate = response["rates"].get(to_currency, None)
        if rate:
            converted_amount = amount * rate
            return f"{amount} {from_currency} is approximately {converted_amount:.2f} {to_currency}."
        else:
            return f"Conversion rate for {to_currency} not found."
    except Exception as e:
        return f"Error in currency conversion: {str(e)}"

# Fun Fact Generator Tool
@tool
def get_fun_fact() -> str:
    """Fetches a random fun fact."""
    try:
        response = requests.get("https://uselessfacts.jsph.pl/random.json?language=en").json()
        return response["text"]
    except Exception as e:
        return f"Error fetching fun fact: {str(e)}"

# Text Sentiment Analyzer
@tool
def analyze_sentiment(text: str) -> str:
    """Analyzes the sentiment of a given text (positive, neutral, or negative).
    Args:
        text: The text to be analyzed.
    """
    try:
        api_url = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
        headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_KEY"}
        response = requests.post(api_url, headers=headers, json={"inputs": text})
        sentiment = response.json()[0][0]['label']
        return f"The sentiment of the given text is: {sentiment}"
    except Exception as e:
        return f"Error in sentiment analysis: {str(e)}"

# Time Zone Tool
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        tz = pytz.timezone(timezone)
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"

final_answer = FinalAnswerTool()
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
    custom_role_conversions=None,
)

# Import tool from Hugging Face Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Define Agent with All Tools
agent = CodeAgent(
    model=model,
    tools=[final_answer, search_tool, image_generation_tool, summarize_text, get_weather, convert_currency, get_fun_fact, analyze_sentiment, get_current_time_in_timezone],
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)

GradioUI(agent).launch()