Spaces:
Running
Running
File size: 23,142 Bytes
ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d e16775a ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 5793bec ba6957d 225a75f ba6957d 225a75f ba6957d 225a75f ba6957d 72d5448 ba6957d 72d5448 ba6957d 72d5448 ba6957d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2025-01-12 10:07:12,956 INFO: PyTorch version 2.5.1 available.\n"
]
}
],
"source": [
"import hopsworks\n",
"from sentence_transformers import SentenceTransformer, InputExample, losses\n",
"from torch.utils.data import DataLoader\n",
"from sklearn.model_selection import train_test_split\n",
"from dotenv import load_dotenv\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2025-01-12 10:07:14,851 INFO: Initializing external client\n",
"2025-01-12 10:07:14,852 INFO: Base URL: https://c.app.hopsworks.ai:443\n",
"2025-01-12 10:07:15,245 WARNING: InsecureRequestWarning: Unverified HTTPS request is being made to host 'c.app.hopsworks.ai'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings\n",
"\n",
"2025-01-12 10:07:18,039 INFO: Python Engine initialized.\n",
"\n",
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/1158296\n"
]
}
],
"source": [
"# Initialize Hopsworks connection\n",
"load_dotenv()\n",
"\n",
"api_key = os.getenv(\"HOPSWORKS_API_KEY\")\n",
"project = hopsworks.login(project=\"orestavf\", api_key_value=api_key)\n",
"fs = project.get_feature_store()\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Finished: Reading data from Hopsworks, using Hopsworks Feature Query Service (2.46s) \n"
]
}
],
"source": [
"# Load preprocessed data\n",
"feedback_fg = fs.get_feature_group(name=\"job_feedback\", version=1)\n",
"feedback_df = feedback_fg.read()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Split into train and validation sets\n",
"train_df, val_df = train_test_split(feedback_df, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Prepare data for SentenceTransformer\n",
"def prepare_examples(df):\n",
" examples = []\n",
" for _, row in df.iterrows():\n",
" examples.append(\n",
" InputExample(\n",
" texts=[row[\"resume_text\"], row[\"job_description\"]],\n",
" label=float(row[\"is_relevant\"]) # Convert to float for loss calculation\n",
" )\n",
" )\n",
" return examples"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"train_examples = prepare_examples(train_df)\n",
"val_examples = prepare_examples(val_df)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2025-01-12 10:07:23,794 INFO: Use pytorch device_name: cpu\n",
"2025-01-12 10:07:23,795 INFO: Load pretrained SentenceTransformer: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2\n"
]
}
],
"source": [
"# Load pretrained SentenceTransformer\n",
"model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Define DataLoader\n",
"train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)\n",
"val_dataloader = DataLoader(val_examples, shuffle=False, batch_size=16)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Define loss\n",
"train_loss = losses.CosineSimilarityLoss(model)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Configure training\n",
"num_epochs = 3\n",
"warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) # 10% of training as warmup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13a4c4779de349a4a93c26a2a952d713",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/6 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'train_runtime': 16.1772, 'train_samples_per_second': 4.265, 'train_steps_per_second': 0.371, 'train_loss': 0.18365144729614258, 'epoch': 3.0}\n",
"2025-01-12 10:07:44,670 INFO: Save model to ./finetuned_model\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a36ca79a9a5245c3931717a3c466bba9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Train the model\n",
"model.fit(\n",
" train_objectives=[(train_dataloader, train_loss)],\n",
" evaluator=None, # Add an evaluator if needed\n",
" epochs=num_epochs,\n",
" warmup_steps=warmup_steps,\n",
" output_path=\"./finetuned_model\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Save the trained model locally\n",
"#model.save(\"./finetuned_model\")\n",
"#print(\"Model finetuned and saved locally!\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from hsml.schema import Schema\n",
"from hsml.model_schema import ModelSchema"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Define the Model Schema\n",
"X_train_sample = train_df[[\"resume_text\", \"job_description\"]].sample(1).values # Input example\n",
"y_train_sample = train_df[\"is_relevant\"].sample(1).values # Output example"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"input_schema = Schema(X_train_sample)\n",
"output_schema = Schema(y_train_sample)\n",
"model_schema = ModelSchema(input_schema=input_schema, output_schema=output_schema)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2025-01-12 10:07:45,746 WARNING: InsecureRequestWarning: Unverified HTTPS request is being made to host 'c.app.hopsworks.ai'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings\n",
"\n"
]
}
],
"source": [
"# Get Model Registry\n",
"mr = project.get_model_registry()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2025-01-12 10:08:24,657 WARNING: VersionWarning: No version provided for getting model `job_matching_sentence_transformer`, defaulting to `1`.\n",
"\n",
"Model already exists with version 1\n"
]
}
],
"source": [
"# Check if the model already exists and get the latest version\n",
"try:\n",
" existing_model = mr.get_model(name=\"job_matching_sentence_transformer\")\n",
" latest_version = existing_model.version\n",
" print(f\"Model already exists with version {latest_version}\")\n",
"except:\n",
" # If the model doesn't exist, set version to 1\n",
" latest_version = 0\n",
"\n",
"# Set the new version dynamically\n",
"new_version = latest_version + 1"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Register the model in the Model Registry\n",
"job_matching_model = mr.python.create_model(\n",
" name=\"job_matching_sentence_transformer\",\n",
" #metrics=metrics,\n",
" model_schema=model_schema,\n",
" input_example=X_train_sample,\n",
" description=\"Finetuned SentenceTransformer for job matching\",\n",
" version=new_version,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "78d7674e395848acb4586dd4dff1fee8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/6 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff6231d9469840229d992abb28a5740b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/727 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53650ea045a24041a44626336d9a9c9b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/212 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21e688c69c7a46a4bb7485d1d088c887",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/470637416 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c68dc00bc2ae4804b73780d0f23e21ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/242 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb846d6b71b746749d59c0bf25779f61",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/21034 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "afda6046a57c42dca546be6defd13f11",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/56 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df4c630a40954b9784a2a631be4ed4e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/1015 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c6430695b7e43c0815fe278328e0448",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/17082987 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1aa72dd0b344a26b22d8839aa12c4fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/1512 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b599ffc95d4499b80673d873b6dfe7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/14763260 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa11d5018fcb4ab094dac6c27128bcf5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/305 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e37354a957d45b88b7a25007b3c7889",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/6678 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f4e0c3e6d64b457bb01e5a0ac2162433",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading: 0.000%| | 0/216 elapsed<00:00 remaining<?"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model created, explore it at https://c.app.hopsworks.ai:443/p/1158296/models/job_matching_sentence_transformer/1\n",
"Model registered in Hopsworks Model Registry!\n"
]
}
],
"source": [
"# Save model artifacts to the Model Registry\n",
"job_matching_model.save(\"./finetuned_model\")\n",
"print(\"Model registered in Hopsworks Model Registry!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "HfHubHTTPError",
"evalue": "409 Client Error: Conflict for url: https://huggingface.co/api/repos/create (Request ID: Root=1-678391c6-22b5b53a19ac4add675f0e05;3fa72b47-baef-4170-8fe3-772ad458534e)\n\nYou already created this model repo",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mHTTPError\u001b[0m Traceback (most recent call last)",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:406\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m 405\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 406\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 407\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\requests\\models.py:1024\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1023\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[1;32m-> 1024\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
"\u001b[1;31mHTTPError\u001b[0m: 409 Client Error: Conflict for url: https://huggingface.co/api/repos/create",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[1;31mHfHubHTTPError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[20], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Push the model to huggingface\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforestav/job_matching_sentence_transformer\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\sentence_transformers\\SentenceTransformer.py:1370\u001b[0m, in \u001b[0;36mSentenceTransformer.push_to_hub\u001b[1;34m(self, repo_id, token, private, safe_serialization, commit_message, local_model_path, exist_ok, replace_model_card, train_datasets, revision, create_pr)\u001b[0m\n\u001b[0;32m 1350\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1351\u001b[0m \u001b[38;5;124;03mUploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.\u001b[39;00m\n\u001b[0;32m 1352\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1367\u001b[0m \u001b[38;5;124;03m str: The url of the commit of your model in the repository on the Hugging Face Hub.\u001b[39;00m\n\u001b[0;32m 1368\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1369\u001b[0m api \u001b[38;5;241m=\u001b[39m HfApi(token\u001b[38;5;241m=\u001b[39mtoken)\n\u001b[1;32m-> 1370\u001b[0m repo_url \u001b[38;5;241m=\u001b[39m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_repo\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1371\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1372\u001b[0m \u001b[43m \u001b[49m\u001b[43mprivate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprivate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1373\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 1374\u001b[0m \u001b[43m \u001b[49m\u001b[43mexist_ok\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexist_ok\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1375\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1376\u001b[0m repo_id \u001b[38;5;241m=\u001b[39m repo_url\u001b[38;5;241m.\u001b[39mrepo_id \u001b[38;5;66;03m# Update the repo_id in case the old repo_id didn't contain a user or organization\u001b[39;00m\n\u001b[0;32m 1377\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_card_data\u001b[38;5;241m.\u001b[39mset_model_id(repo_id)\n",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\huggingface_hub\\utils\\_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[0;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[1;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\huggingface_hub\\hf_api.py:3525\u001b[0m, in \u001b[0;36mHfApi.create_repo\u001b[1;34m(self, repo_id, token, private, repo_type, exist_ok, resource_group_id, space_sdk, space_hardware, space_storage, space_sleep_time, space_secrets, space_variables)\u001b[0m\n\u001b[0;32m 3522\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[0;32m 3524\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3525\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mr\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3526\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 3527\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m exist_ok \u001b[38;5;129;01mand\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m409\u001b[39m:\n\u001b[0;32m 3528\u001b[0m \u001b[38;5;66;03m# Repo already exists and `exist_ok=True`\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\Filip\\jobsai\\venv\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:477\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m 473\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m 475\u001b[0m \u001b[38;5;66;03m# Convert `HTTPError` into a `HfHubHTTPError` to display request information\u001b[39;00m\n\u001b[0;32m 476\u001b[0m \u001b[38;5;66;03m# as well (request id and/or server error message)\u001b[39;00m\n\u001b[1;32m--> 477\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, \u001b[38;5;28mstr\u001b[39m(e), response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
"\u001b[1;31mHfHubHTTPError\u001b[0m: 409 Client Error: Conflict for url: https://huggingface.co/api/repos/create (Request ID: Root=1-678391c6-22b5b53a19ac4add675f0e05;3fa72b47-baef-4170-8fe3-772ad458534e)\n\nYou already created this model repo"
]
}
],
"source": [
"# Push the model to huggingface\n",
"model.push_to_hub(repo_id=\"forestav/job_matching_sentence_transformer\", exist_ok=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|